Jing Lv

List of Publications by Citations

Source: https://exaly.com/author-pdf/2093641/jing-lv-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,349 94 20 33 g-index h-index papers citations 4.83 102 1,737 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
94	Insight into the Balancing Effect of Active Cu Species for Hydrogenation of Carbon D xygen Bonds. <i>ACS Catalysis</i> , 2015 , 5, 6200-6208	13.1	141
93	Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability. <i>AICHE Journal</i> , 2012 , 58, 2798-2809	3.6	97
92	Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts. <i>AICHE Journal</i> , 2013 , 59, 2530-2539	3.6	68
91	Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. <i>Catalysis Science and Technology</i> , 2015 , 5, 4378-4389	5.5	59
90	N-Doped Dual Carbon-Confined 3D Architecture rGO/FeO/AC Nanocomposite for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 13470-13478	3 9.5	56
89	CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2O3 catalysts. <i>Frontiers of Chemical Science and Engineering</i> , 2016 , 10, 273-280	4.5	53
88	Balancing Effect between Adsorption and Diffusion on Catalytic Performance Inside Hollow Nanostructured Catalyst. <i>ACS Catalysis</i> , 2019 , 9, 2969-2976	13.1	48
87	A High-Performance Nanoreactor for Carbon Dxygen Bond Hydrogenation Reactions Achieved by the Morphology of Nanotube-Assembled Hollow Spheres. <i>ACS Catalysis</i> , 2018 , 8, 1218-1226	13.1	47
86	Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation. <i>RSC Advances</i> , 2016 , 6, 677-686	3.7	46
85	Hydrogenation of Dimethyl Oxalate Using Extruded Cu/SiO2 Catalysts: Mechanical Strength and Catalytic Performance. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13935-13943	3.9	36
84	Hydrogenation of Dimethyl Oxalate over Copper-Based Catalysts: Acid B ase Properties and Reaction Paths. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 9699-9707	3.9	32
83	Monodisperse Nano-Fe3O4 on \(\frac{1}{2}\)Al2O3 Catalysts for Fischer\(\frac{1}{2}\) ropsch Synthesis to Lower Olefins: Promoter and Size Effects. \(ChemCatChem, \textbf{2017}, 9, 3144-3152 \)	5.2	31
82	Effect of sulfidation temperature on CoOMoO3/EAl2O3 catalyst for sulfur-resistant methanation. <i>Catalysis Science and Technology</i> , 2013 , 3, 2793	5.5	30
81	Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2Al2O3 toward sulfur-resistant methanation. <i>Applied Catalysis A: General</i> , 2013 , 466, 224-232	5.1	29
80	Deactivation Kinetics for the Carbonylation of Dimethyl Ether to Methyl Acetate on H-MOR. <i>Industrial & Dimetrial </i>	3.9	28
79	Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation. <i>Journal of Energy Chemistry</i> , 2014 , 23, 35-42	12	28
78	Facile Synthesis of Cu@CeO2 and Its Catalytic Behavior for the Hydrogenation of Methyl Acetate to Ethanol. <i>ChemCatChem</i> , 2017 , 9, 2085-2090	5.2	25

(2001-2013)

77	A zirconium modified Co/SiO2 Fischer-Tropsch catalyst prepared by dielectric-barrier discharge plasma. <i>Journal of Energy Chemistry</i> , 2013 , 22, 506-511	12	23
76	High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. <i>Journal of Energy Chemistry</i> , 2014 , 23, 625-632	12	22
75	Effect of the ceriallumina composite support on the Mo-based catalysts sulfur-resistant activity for the synthetic natural gas process. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2012 , 106, 495-506	1.6	22
74	Influence of Acid Strength on the Reactivity of Dimethyl Ether Carbonylation over H-MOR. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2027-2034	8.3	18
73	Co-Based Catalysts Supported on Silica and Carbon Materials: Effect of Support Property on Cobalt Species and Fischer Tropsch Synthesis Performance. <i>Industrial & Discourse Chemistry Research</i> , 2019 , 58, 3459-3467	3.9	17
72	Characterization of Silica-Supported Cobalt Catalysts Prepared by Decomposition of Nitrates Using Dielectric-Barrier Discharge Plasma. <i>Catalysis Letters</i> , 2011 , 141, 1391-1398	2.8	16
71	Combating poison with poisont reducible Co2SiO4 as a promoter to modify Co-based catalysts in Fischer-Tropsch synthesis. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118377	21.8	16
70	Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis. <i>Frontiers of Chemical Science and Engineering</i> , 2012 , 6, 415-422	4.5	15
69	Effect of Citric Acid on MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation. <i>Catalysts</i> , 2017 , 7, 151	4	14
68	High-Performance CoCu Catalyst Encapsulated in KIT-6 for Higher Alcohol Synthesis from Syngas. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 200-209	8.3	14
67	Nano-Assembled Mordenite Zeolite with Tunable Morphology for Carbonylation of Dimethyl Ether. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6460-6468	5.6	13
66	Enhanced Selectivity and Stability of Cu/SiO2 Catalysts for Dimethyl Oxalate Hydrogenation to Ethylene Glycol by Using Silane Coupling Agents for Surface Modification. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9414-9422	3.9	13
65	Effect of a promoter on the methanation activity of a Mo-based sulfur-resistant catalyst. <i>Frontiers of Chemical Science and Engineering</i> , 2013 , 7, 88-94	4.5	13
64	Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4328	3.1	12
63	Ni-based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds and its activity in the methanation of carbon monoxide. <i>Kinetics and Catalysis</i> , 2014 , 55, 217-223	1.5	12
62	EFFECT OF Cu CATALYST PREPARATION ON THE OXIDATIVE CARBONYLATION OF METHANOL TO DIMETHYL CARBONATE. <i>Reaction Kinetics and Catalysis Letters</i> , 2002 , 76, 179-187		11
61	Sulfur-Resistant CO Methanation to CH4 Over MoS2/ZrO2 Catalysts: Support Size Effect On Morphology and Performance of Mo Species. <i>Catalysis Letters</i> , 2018 , 148, 2585-2595	2.8	10
60	Effect of Hydrogen on Catalytic Coupling Reaction of Carbon Monoxide to Diethyl Oxalate. Reaction Kinetics and Catalysis Letters, 2001 , 73, 135-142		9

59	Mechanism study of ammonium nitrate decomposition with chloride impurity using experimental and molecular simulation approach. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120585	12.8	8
58	Research Progress of Catalysis for Low-Carbon Olefins Synthesis Through Hydrogenation of COI Journal of Nanoscience and Nanotechnology, 2019 , 19, 3162-3172	1.3	8
57	Impact of the Oxygen Vacancies on Copper Electronic State and Activity of Cu-Based Catalysts in the Hydrogenation of Methyl Acetate to Ethanol. <i>ChemCatChem</i> , 2019 , 11, 2607-2614	5.2	8
56	Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. <i>Frontiers of Chemical Science and Engineering</i> , 2015 , 9, 33-39	4.5	8
55	DFT study into the reaction mechanism of CO methanation over pure MoS2. <i>International Journal of Quantum Chemistry</i> , 2018 , 118, e25643	2.1	8
54	Effect of calcium formate as an additive on desulfurization in power plants. <i>Journal of Environmental Sciences</i> , 2018 , 67, 89-95	6.4	8
53	MoP/Al2O3 as a novel catalyst for sulfur-resistant methanation. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4515	3.1	8
52	Pd-Fe/FAl2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure. <i>Frontiers of Chemical Science and Engineering</i> , 2012 , 6, 259-269	4.5	8
51	Active CuOtu Sites for the Hydrogenation of Carbon Dxygen Bonds over Cu/CeO2 Catalysts. <i>ACS Catalysis</i> , 2022 , 12, 1315-1325	13.1	8
50	Review of plasma-assisted reactions and potential applications for modification of metal B rganic frameworks. <i>Frontiers of Chemical Science and Engineering</i> , 2019 , 13, 444-457	4.5	7
49	The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2. <i>Kinetics and Catalysis</i> , 2015 , 56, 329-334	1.5	7
48	Effect of alkyl nitrite decomposition on catalytic performance of CO coupling reaction over supported palladium catalyst. <i>Frontiers of Chemical Science and Engineering</i> , 2012 , 6, 410-414	4.5	7
47	CO2 methanation over nickel-based catalysts prepared by citric acid complexation method. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5268	3.1	7
46	Role of Brfisted Acid Sites within 8-MR of Mordenite in the Deactivation Roadmap for Dimethyl Ether Carbonylation. <i>ACS Catalysis</i> , 2021 , 11, 5647-5657	13.1	7
45	Effects of titanium silicalite and TiO2 nanocomposites on supported Co-based catalysts for Fischer Tropsch synthesis. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4640	3.1	6
44	Improved Catalytic Performance in Dimethyl Ether Carbonylation over Hierarchical Mordenite by Enhancing Mass Transfer. <i>Industrial & Enhancing Chemistry Research</i> , 2020 , 59, 13861-13869	3.9	6
43	Ni/ZrO2 Catalysts Synthesized via Urea Combustion Method for CO2 Methanation. <i>Transactions of Tianjin University</i> , 2018 , 24, 471-479	2.9	6
42	Active phase of highly active Co3O4 catalyst for synthetic natural gas production. <i>RSC Advances</i> , 2014 , 4, 57185-57191	3.7	6

(2021-2021)

41	Enhanced gasoline selectivity through Fischer-Tropsch synthesis on a bifunctional catalyst: Effects of active sites proximity and reaction temperature. <i>Chemical Engineering Journal</i> , 2021 , 416, 129180	14.7	6	
40	Ni Z n Dual Sites Switch the CO2 Hydrogenation Selectivity via Tuning of the d-Band Center. <i>ACS Catalysis</i> , 2022 , 12, 3346-3356	13.1	6	
39	Precursor effect on catalytic properties of Mo-based catalyst for sulfur-resistant methanation. <i>Korean Journal of Chemical Engineering</i> , 2014 , 31, 2157-2161	2.8	5	
38	Real atom economy and its application for evaluation the green degree of a process. <i>Frontiers of Chemical Science and Engineering</i> , 2011 , 5, 349-354	4.5	5	
37	Examination of Tunable Edge Sites and Catalyst Deactivation in the MoS2-Catalyzed Methanation of Syngas. <i>Industrial & Deactive Engineering Chemistry Research</i> , 2019 , 58, 21996-22005	3.9	5	
36	Novel Method for Preparing a Carbon Nanotube-Supported Cobalt Catalyst for Fischer I ropsch Synthesis: Hydrogen Dielectric-Barrier Discharge Plasma. <i>Transactions of Tianjin University</i> , 2017 , 23, 20-25	2.9	4	
35	Nanoflower-like Cu/SiO2 Catalyst for Hydrogenation of Ethylene Carbonate to Methanol and Ethylene Glycol: Enriching H2 Adsorption. <i>ChemCatChem</i> , 2020 , 12, 3670-3678	5.2	4	
34	Effect of citric acid on CoOMoO3/Al2O3 catalysts for sulfur-resistant methanation. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2018 , 125, 111-126	1.6	4	
33	Effect of sulphidation temperature on the performance of NiOMoO3/EAl2O3 catalysts for sulphur-resistant methanation. <i>RSC Advances</i> , 2014 , 4, 56174-56182	3.7	4	
32	Influence of Water on the Methanation Performance of Mo-Based Sulfur-Resistant Catalysts with and without Cobalt Additive. <i>Bulletin of the Korean Chemical Society</i> , 2015 , 36, 74-82	1.2	4	
31	Homogeneous Catalytic Kinetics of Methyl Glycolate Hydrolysis. <i>Chemical Engineering and Technology</i> , 2016 , 39, 918-926	2	4	
30	Carbon NanotubesMnOx Nanocomposite as Support for Iron-Based Catalysts for the Fischer Tropsch Synthesis of Liquid Fuels. <i>Energy Technology</i> , 2017 , 5, 1517-1521	3.5	3	
29	Effect of oxygen on the activity of a Pd-Fe/a-Al2O3catalyst for CO coupling to diethyl oxalate. <i>Reaction Kinetics and Catalysis Letters</i> , 2002 , 76, 303-308		3	
28	Effects of lanthanum addition on Ni-B amorphous alloy catalysts used in anthraquinone hydrogenation. <i>Reaction Kinetics and Catalysis Letters</i> , 2003 , 80, 233-239		3	
27	Catalytic Activity and Surface Characterization Study of Pd Supported on Nanocrystalline and Polycrystalline CeO2. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 581, 449		3	
26	CoreBhell [email[protected] Catalyst: Effect of a Confined Carbon Microenvironment on Syngas Conversion. <i>Industrial & Description of the Conversion of the </i>	3.9	3	
25	Synergistic effect of catalyst and plasma on CO2 decomposition in a dielectric barrier discharge plasma reactor. <i>Molecular Catalysis</i> , 2021 , 499, 111304	3.3	3	
24	Insight into the Influence of the Graphite Layer and Cobalt Crystalline on a ZIF-67-Derived Catalyst for Fischer-Tropsch Synthesis. <i>ACS Applied Materials & Description of Synthesis</i> (13, 9885-9896)	9.5	3	

23	The main factors controlling generation of synthetic natural gas by methanation of synthesis gas in the presence of sulfur-resistant Mo-based catalysts. <i>Kinetics and Catalysis</i> , 2013 , 54, 338-343	1.5	2
22	Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 41, 366-366	3.2	2
21	Mo-Based Catalyst Supported on Binary Ceriallanthanum Solid Solution for Sulfur-Resistant Methanation: Effect of La Dopant. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1803-1817	1 ^{3.9}	2
20	Highly active Pd-Fe/\textsquare\t	8.1	2
19	A Monodisperse & (CoxFe1x)2.2C Bimetallic Carbide Catalyst for Direct Conversion of Syngas to Higher Alcohols. <i>ACS Catalysis</i> ,6016-6028	13.1	2
18	Methanation Performance of Unsupported MoP Catalysts Prepared with Phytic Acid under Low H2/CO. <i>ChemistrySelect</i> , 2020 , 5, 7586-7595	1.8	1
17	The effect of citric acid on the catalytic activity of nano-sized MoS2 toward sulfur-resistant CO methanation. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4339	3.1	1
16	Enhanced sulfur-resistant methanation performance over MoO3IrO2 catalyst prepared by solution combustion method. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5022	3.1	1
15	Monodisperse Nano-Fe3O4 on FAl2O3 Catalysts for Fischer Tropsch Synthesis to Lower Olefins: Promoter and Size Effects. <i>ChemCatChem</i> , 2017 , 9, 3088-3089	5.2	1
14	Effects of preparation method and Mo2C loading on the Mo2C/ZrO2 catalyst for sulfur-resistant methanation. <i>Molecular Catalysis</i> , 2020 , 482, 110668	3.3	1
13	CO2 hydrogenation to C5+ hydrocarbons over K-promoted Fe/CNT catalyst: Effect of potassium on structure activity relationship. <i>Applied Organometallic Chemistry</i> , 2021 , 35, e6253	3.1	1
12	Janus Au E e2.2C Catalyst for Direct Conversion of Syngas to Higher Alcohols. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 11258-11268	8.3	1
11	The modification of titanium in mesoporous silica for Co-based Fischer-Tropsch catalysts. <i>Frontiers of Chemical Science and Engineering</i> ,1	4.5	1
10	Engineered Chemical Utilization of CO2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	1
9	Impact of Zr on the Activity of MoO3/Ce1⊠ZrxO2 Catalysts for Sulfur-Resistant Methanation. <i>Topics in Catalysis</i> , 2021 , 64, 582-590	2.3	О
8	Efficient Synthesis of Mordenite Zeolite for Dimethyl Ether Carbonylation. <i>Industrial & amp;</i> Engineering Chemistry Research, 2021 , 60, 8085-8093	3.9	0
7	Preparation of high performance Co3O4/Al2O3 catalysts by doping Al into ZIF-67: Effect of Al sources on Fischer-Tropsch synthesis. <i>Applied Surface Science</i> , 2021 , 570, 151127	6.7	0
6	Enhanced production of C2II4 alkanes from syngas via a metal sulfide upport interaction over NiIMoS2/Ce1ILaxO2II Catalysis Science and Technology, 2020, 10, 4340-4351	5.5	

LIST OF PUBLICATIONS

5	Kinetics Modeling of Calcium Formate Synthesis by Calcium Hydroxide Carbonylation. <i>Transactions of Tianjin University</i> , 2018 , 24, 144-151	2.9
4	Optimization of Co-precipitation Condition for Preparing Molybdenum-Based Sulfur-Resistant Methanation Catalysts. <i>Transactions of Tianjin University</i> , 2019 , 25, 504-516	2.9
3	Impact of the Oxygen Vacancies on Copper Electronic State and Activity of Cu-Based Catalysts in the Hydrogenation of Methyl Acetate to Ethanol. <i>ChemCatChem</i> , 2019 , 11, 2562-2562	5.2
2	Catalytic Stability of Ni Catalyst for Partial Oxidation of Methane to Syngas. <i>ACS Symposium Series</i> , 2003 , 246-259	0.4
1	Supplementary Mechanism for Oxycarbonylation of Methanol Over CuY Catalyst: Origin of the Oxygen Atom in Methoxyl and Formation of By-Products. <i>Catalysis Letters</i> , 2021 , 151, 3334-3342	2.8