
Daniel E Sonenshine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histological Atlas of the Internal Anatomy of Female <i>Varroa destructor</i> (Mesostigmata:) Tj ETQq1 1 0.784 America, 2022, 115, 163-193.	314 rgBT 2.5	/Overlock 10 5
2	Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends in Genetics, 2021, 37, 8-11.	6.7	8
3	Biology and Molecular Biology of Ixodes scapularis. , 2021, , .		1
4	Tick Ecdysteroid Hormone, Global Microbiota/Rickettsia Signaling in the Ovary versus Carcass during Vitellogenesis in Part-Fed (Virgin) American Dog Ticks, Dermacentor variabilis. Microorganisms, 2021, 9, 1242.	3.6	2
5	Microbiomes of Blood-Feeding Arthropods: Genes Coding for Essential Nutrients and Relation to Vector Fitness and Pathogenic Infections. A Review. Microorganisms, 2021, 9, 2433.	3.6	14
6	Heme Oxygenase-1 Induction by Blood-Feeding Arthropods Controls Skin Inflammation and Promotes Disease Tolerance. Cell Reports, 2020, 33, 108317.	6.4	10
7	Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: Ixodidae): a new insight into the mechanism of blood-feeding. Scientific Reports, 2020, 10, 165.	3.3	18
8	Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS ONE, 2020, 15, e0242688.	2.5	25
9	Insights into the feeding behaviors and biomechanics of Varroa destructor mites on honey bee pupae using electropenetrography and histology. Journal of Insect Physiology, 2019, 119, 103950.	2.0	11
10	Vitellogenin Receptor as a Target for Tick Control: A Mini-Review. Frontiers in Physiology, 2019, 10, 618.	2.8	38
11	Insights into the metabolism and behaviour of <i>Varroa destructor</i> mites from analysis of their waste excretions. Parasitology, 2019, 146, 527-532.	1.5	19
12	Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks and Tick-borne Diseases, 2019, 10, 219-240.	2.7	111
13	Using an in vitro system for maintaining Varroa destructor mites on Apis mellifera pupae as hosts: studies of mite longevity and feeding behavior. Experimental and Applied Acarology, 2018, 74, 301-315.	1.6	27
14	Getting Them Where They Live—Semiochemical-Based Strategies To Address Major Gaps in Vector Control Programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. ACS Symposium Series, 2018, , 101-152.	0.5	4
15	Range Expansion of Tick Disease Vectors in North America: Implications for Spread of Tick-Borne Disease. International Journal of Environmental Research and Public Health, 2018, 15, 478.	2.6	316
16	An In Vitro Blood-Feeding Method Revealed Differential <i>Borrelia turicatae</i> (Spirochaetales:) Tj ETQq0 0 0 rgl Tick <i>Ornithodoros turicata</i> (Acari: Argasidae). Journal of Medical Entomology, 2017, 54, tjw171.	3T /Overlo 1.8	ock 10 Tf 50 1 9
17	Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds. Scientific Reports, 2017, 7, 44593.	3.3	57
18	Infrared light detection by the haller's organ of adult american dog ticks, Dermacentor variabilis	2.7	33

Infrared light detection by the haller's organ of adult american dog ticks, Dermacentor variabilis (Ixodida: Ixodidae). Ticks and Tick-borne Diseases, 2017, 8, 764-771. 2.7 18

DANIEL E SONENSHINE

#	Article	IF	CITATIONS
19	Tick Haller's Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects. International Journal of Molecular Sciences, 2017, 18, 1563.	4.1	49
20	Microbial Invasion vs. Tick Immune Regulation. Frontiers in Cellular and Infection Microbiology, 2017, 7, 390.	3.9	45
21	Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice despite Strong Inflammatory Response: An Expanding Paradigm for Understanding Tick–Host Interactions. Frontiers in Immunology, 2017, 8, 1784.	4.8	38
22	Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 2016, 6, 103.	3.9	38
23	Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. PLoS ONE, 2016, 11, e0141084.	2.5	19
24	Tickâ€, mosquitoâ€, and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	2.2	31
25	Evidence of female sex pheromones and characterization of the cuticular lipids of unfed, adult male versus female blacklegged ticks, Ixodes scapularis. Experimental and Applied Acarology, 2016, 68, 519-538.	1.6	11
26	Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature Communications, 2016, 7, 10507.	12.8	450
27	Experimental vertical transmission of Rickettsia parkeri in the Gulf Coast tick, Amblyomma maculatum. Ticks and Tick-borne Diseases, 2015, 6, 568-573.	2.7	33
28	TickBot: A novel robotic device for controlling tick populations in the natural environment. Ticks and Tick-borne Diseases, 2015, 6, 146-151.	2.7	13
29	Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks. Parasites and Vectors, 2015, 8, 132.	2.5	12
30	<i>Rickettsia parkeri</i> Transmission to <i>Amblyomma americanum</i> by Cofeeding with <i>Amblyomma maculatum</i> (Acari: Ixodidae) and Potential for Spillover. Journal of Medical Entomology, 2015, 52, 1090-1095.	1.8	63
31	The ToxAvapA Toxin-Antitoxin Locus Contributes to the Survival of Nontypeable Haemophilus influenzae during Infection. PLoS ONE, 2014, 9, e91523.	2.5	16
32	Transcriptome of the Female Synganglion of the Black-Legged Tick Ixodes scapularis (Acari: Ixodidae) with Comparison between Illumina and 454 Systems. PLoS ONE, 2014, 9, e102667.	2.5	51
33	The Use of Ivermectin to Kill Ixodes Scapularis Ticks Feeding on Humans. Wilderness and Environmental Medicine, 2014, 25, 29-34.	0.9	5
34	Ticks and spotted fever group rickettsiae of southeastern Virginia. Ticks and Tick-borne Diseases, 2014, 5, 53-57.	2.7	73
35	Initial Assessment of the Ability of Ivermectin to Kill Ixodes scapularis and Dermacentor variabilis Ticks Feeding on Humans. Wilderness and Environmental Medicine, 2013, 24, 48-52.	0.9	3
36	Ivermectin Causes Cimex lectularius (Bedbug) Morbidity and Mortality. Journal of Emergency Medicine, 2013, 45, 433-440.	0.7	41

DANIEL E SONENSHINE

#	Article	IF	CITATIONS
37	Gene Expression of Tissue-Specific Molecules in Ex vivo <i>Dermacentor variabilis</i> (Acari: Ixodidae) During Rickettsial Exposure. Journal of Medical Entomology, 2013, 50, 1089-1096.	1.8	22
38	In vitropropagation ofCandidatusRickettsia andeanae isolated fromAmblyomma maculatum. FEMS Immunology and Medical Microbiology, 2012, 64, 74-81.	2.7	20
39	Ixodes affinis (Acari: Ixodidae) in southeastern Virginia and implications for the spread of Borrelia burgdorferi, the agent of Lyme disease. Journal of Vector Ecology, 2011, 36, 464-467.	1.0	46
40	New approach for the study of mite reproduction: The first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Insect Physiology, 2011, 57, 52-61.	2.0	19
41	Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis. Journal of Insect Physiology, 2011, 57, 400-408.	2.0	56
42	<i>Rickettsia parkeri</i> in Gulf Coast Ticks, Southeastern Virginia, USA. Emerging Infectious Diseases, 2011, 17, 896-898.	4.3	60
43	First Transcriptome of the Testis-Vas Deferens-Male Accessory Gland and Proteome of the Spermatophore from Dermacentor variabilis (Acari: Ixodidae). PLoS ONE, 2011, 6, e24711.	2.5	55
44	Neuropeptide signaling sequences identified by pyrosequencing of the American dog tick synganglion transcriptome during blood feeding and reproduction. Insect Biochemistry and Molecular Biology, 2010, 40, 79-90.	2.7	47
45	Ticks. , 2009, , 1003-1011.		2
46	Comparative Efficacy of BioUD to Other Commercially Available Arthropod Repellents against the Ticks Amblyomma americanum and Dermacentor variabilis on Cotton Cloth. American Journal of Tropical Medicine and Hygiene, 2009, 81, 685-690.	1.4	33
47	Heme-binding storage proteins in the Chelicerata. Journal of Insect Physiology, 2009, 55, 287-296.	2.0	54
48	Characterization of vitellin protein in the twospotted spider mite, Tetranychus urticae (Acari:) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 302
49	Male engorgement factor: Role in stimulating engorgement to repletion in the ixodid tick, Dermacentor variabilis. Journal of Insect Physiology, 2009, 55, 909-918.	2.0	16
50	Using RNA interference to determine the role of varisin in the innate immune system of the hard tick Dermacentor variabilis (Acari: Ixodidae). Experimental and Applied Acarology, 2008, 46, 7-15.	1.6	13
51	Silencing expression of the defensin, varisin, in male DermacentorÂvariabilis by RNA interference results in reduced AnaplasmaÂmarginale infections. Experimental and Applied Acarology, 2008, 46, 17-28.	1.6	37
52	Exploring the mialome of ticks: An annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics, 2008, 9, 552.	2.8	109
53	Hormonal regulation of metamorphosis and reproduction in ticks. Frontiers in Bioscience - Landmark, 2008, Volume, 7250.	3.0	24
54	Molecular characterization and related aspects of the innate immune response in ticks. Frontiers in	3.0	74

Bioscience - Landmark, 2008, Volume, 7046.

#	Article	IF	CITATIONS
55	Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Frontiers in Bioscience - Landmark, 2008, Volume, 6938.	3.0	609
56	Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. Insect Biochemistry and Molecular Biology, 2007, 37, 363-374.	2.7	84
57	Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick. Insect Biochemistry and Molecular Biology, 2007, 37, 375-388.	2.7	61
58	TICK PHEROMONES AND THEIR USE IN TICK CONTROL. Annual Review of Entomology, 2006, 51, 557-580.	11.8	110
59	Tick control: further thoughts on a research agenda. Trends in Parasitology, 2006, 22, 550-551.	3.3	65
60	In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). Journal of Insect Physiology, 2005, 51, 1105-1116.	2.0	48
61	Host Blood Proteins and Peptides in the Midgut of the Tick Dermacentor variabilis Contributeto Bacterial Control. Experimental and Applied Acarology, 2005, 36, 207-223.	1.6	61
62	Capillary Tube Feeding System for Studying Tick–Pathogen Interactions of <i>Dermacentor variabilis</i> (Acari: Ixodidae) and <i>Anaplasma marginale</i> (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology, 2005, 42, 864-874.	1.8	21
63	An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae). Insect Biochemistry and Molecular Biology, 2003, 33, 1099-1103.	2.7	49
64	Chemical Composition of Some Components of the Arrestment Pheromone of the Black-Legged Tick, <i>Ixodes scapularis</i> (Acari: Ixodidae) and Their Use in Tick Control. Journal of Medical Entomology, 2003, 40, 849-859.	1.8	37
65	Resistance of the Tick <i>Dermacentor variabilis</i> (Acari: Ixodidae) Following Challenge with the Bacterium <i>Escherichia coli</i> (Enterobacteriales: Enterobacteriaceae). Journal of Medical Entomology, 2002, 39, 376-383.	1.8	51
66	Rickettsial Infection in <i>Dermacentor variabilis</i> (Acari: Ixodidae) Inhibits Transovarial Transmission of a Second <i>Rickettsia</i> . Journal of Medical Entomology, 2002, 39, 809-813.	1.8	246
67	Glass Capillary Tube Feeding: A Method for Infecting Nymphal <i>Ixodes scapularis</i> (Acari: Ixodidae) with The Lyme Disease Spirochete <i>Borrelia burgdorferi</i> . Journal of Medical Entomology, 2002, 39, 285-292.	1.8	40
68	Kinetics of ingested host immunoglobulin G in hemolymph and whole body homogenates during nymphal development of Dermacentor variabilis and Ixodes scapularis ticks (Acari: Ixodidae). Experimental and Applied Acarology, 2002, 27, 329-340.	1.6	19
69	Expression of Defensin-Like Peptides in Tick Hemolymph and Midgut in Response to Challenge with Borrelia burgdorferi, Escherichia coli and Bacillus subtilis. Experimental and Applied Acarology, 2002, 28, 127-134.	1.6	55
70	Developmental profile, isolation, and biochemical characterization of a novel lipoglycoheme-carrier protein from the American dog tick, Dermacentor variabilis (Acari: Ixodidae) and observations on a similar protein in the soft tick, Ornithodoros parkeri (Acari: Argasidae). Insect Biochemistry and Molecular Biology, 2001, 31, 299-311.	2.7	42
71	Infection and Transovarial Transmission of Rickettsiae inDermacentor variabilisTicks Acquired by Artificial Feeding. Vector-Borne and Zoonotic Diseases, 2001, 1, 45-53.	1.5	67
72	Contrasts in Tick Innate Immune Responses to <i>Borrelia burgdorferi</i> Challenge: Immunotolerance in <i>Ixodes scapularis</i> Versus Immunocompetence in <i>Dermacentor variabilis</i> (Acari: Ixodidae). Journal of Medical Entomology, 2001, 38, 99-107.	1.8	104

DANIEL E SONENSHINE

#	Article	IF	CITATIONS
73	Enhancement of OspC expression byBorrelia burgdorferiin the presence of tick hemolymph. FEMS Microbiology Letters, 2000, 193, 137-141.	1.8	10
74	Absence of insect juvenile hormones in the American dog tick, Dermacentor variabilis (Say) (Acari:Ixodidae), and in Ornithodoros parkeri Cooley (Acari:Argasidae). Journal of Insect Physiology, 2000, 46, 477-490.	2.0	49
75	Does geographic range affect the attractant-aggregation-attachment pheromone of the tropical bont tick, amblyomma variegatum?. Experimental and Applied Acarology, 2000, 24, 283-299.	1.6	5
76	Response of the Tick <i>Dermacentor variabilis</i> (Acari: Ixodidae) to Hemocoelic Inoculation of <i>Borrelia burgdorferi</i> (Spirochetales). Journal of Medical Entomology, 2000, 37, 265-270.	1.8	66
77	Efficacy of tags impregnated with pheromone and acaricide for control of Amblyomma variegatum. Medical and Veterinary Entomology, 1998, 12, 141-150.	1.5	21
78	Control of Bacterial Infections in the Hard Tick Dermacentor variabilis (Acari: Ixodidae): Evidence for the Existence of Antimicrobial Proteins in Tick Hemolymph. Journal of Medical Entomology, 1998, 35, 458-464.	1.8	74
79	Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. Journal of Foot and Ankle Surgery, 1997, 36, 272-278.	1.0	228
80	Evaluation of subcutaneous injection of local anesthetic agents as a method of tick removal. American Journal of Emergency Medicine, 1995, 13, 14-16.	1.6	9
81	Borrelia burgdorferi in Eastern Virginia: Comparison between a Coastal and Inland Locality. American Journal of Tropical Medicine and Hygiene, 1995, 53, 123-133.	1.4	35
82	A Striped Skunk Population in Virginia, 1963-69. Chesapeake Science, 1974, 15, 140.	0.5	9
83	Evidence for the Existence of A Sex Pheromone in 2 Species of Ixodid Ticks (Metastigmata: Ixodidae)1. Journal of Medical Entomology, 1974, 11, 307-315.	1.8	29
84	A striped skunk population in Virginia, 1963–69. Estuaries and Coasts, 1974, 15, 140-145.	2.2	0
85	A Contribution to the Internal Anatomy and Histology of the Bat Tick Ornithodoros Kelleyi Cooley And Kohls, 1941.: I. The alimentary system, with notes on the food channel in Ornithodoros denmarki Kohls, Sonenshine, and Clifford, 19651. Journal of Medical Entomology, 1970, 7, 46-64.	1.8	9
86	The Systematics of the Subfamily Ornithodorinae (Acarina: Argasidae). I. The Genera and Subgenera. Annals of the Entomological Society of America, 1964, 57, 429-437.	2.5	58