Liangjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093434/publications.pdf

Version: 2024-02-01

147801 128289 3,678 63 31 60 h-index citations g-index papers 63 63 63 5619 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Metalâ€Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1703455.	14.9	597
2	High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications, 2014, 50, 2304.	4.1	244
3	High oxygen reduction activity on a metal–organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. Journal of Materials Chemistry A, 2017, 5, 789-795.	10.3	171
4	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	10.3	168
5	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	10.3	165
6	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	10.3	159
7	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	8.0	158
8	General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochimica Acta, 2015, 184, 250-256.	5.2	152
9	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 4570-4574.	13.8	117
10	Spherical Superstructure of Boron Nitride Nanosheets Derived from Boron-Containing Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 8755-8762.	13.7	96
11	Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator. Journal of Materials Chemistry A, 2014, 2, 5323-5329.	10.3	85
12	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	6.7	85
13	Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-Based Metal–Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal-to-Single-Crystal Transformation for Enhanced Selectivity. Chemistry of Materials, 2015, 27, 1502-1516.	6.7	76
14	Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 17371-17377.	10.3	75
15	Gas Storage and Diffusion through Nanocages and Windows in Porous Metal–Organic Framework Cu2(2,3,5,6-tetramethylbenzene-1,4-diisophthalate)(H2O)2. Chemistry of Materials, 2014, 26, 4679-4695.	6.7	73
16	Nitrogen-doped porous carbons from bipyridine-based metal-organic frameworks: Electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation. Carbon, 2014, 79, 544-553.	10.3	68
17	High CO ₂ /N ₂ and CO ₂ /CH ₄ selectivity in a chiral metalâ€"organic framework with contracted pores and multiple functionalities. Chemical Communications, 2014, 50, 6886-6889.	4.1	63
18	Large Surface Area Ordered Porous Carbons via Nanocasting Zeolite 10X and High Performance for Hydrogen Storage Application. ACS Applied Materials & Interfaces, 2014, 6, 167-175.	8.0	59

#	Article	IF	CITATIONS
19	Titanosilicate Derived SiO ₂ /TiO ₂ @C Nanosheets with Highly Distributed TiO ₂ Nanoparticles in SiO ₂ Matrix as Robust Lithium Ion Battery Anode. ACS Applied Materials & Diversion 10, 44463-44471.	8.0	50
20	Superstructure of a Metal–Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano, 2019, 13, 2901-2912.	14.6	47
21	Enhanced Uptake and Selectivity of CO ₂ Adsorption in a Hydrostable Metal–Organic Frameworks via Incorporating Methylol and Methyl Groups. ACS Applied Materials & mp; Interfaces, 2014, 6, 16932-16940.	8.0	46
22	Production of highly microporous carbons with large CO2 uptakesÂat atmospheric pressure by KOH activation of peanut shell char. Journal of Porous Materials, 2015, 22, 1581-1588.	2.6	46
23	Sustained-Release Method for the Directed Synthesis of ZIF-Derived Ultrafine Co-N-C ORR Catalysts with Embedded Co Quantum Dots. ACS Applied Materials & Empty (Interfaces, 2020, 12, 57847-57858.	8.0	46
24	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	5.2	44
25	Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochimica Acta, 2020, 354, 136717.	5.2	44
26	Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. Journal of Power Sources, 2021, 486, 229373.	7.8	41
27	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37046-37056.	8.0	38
28	Boosting Fast and Stable Alkali Metal Ion Storage by Synergistic Engineering of Oxygen Vacancy and Amorphous Structure. Advanced Functional Materials, 2022, 32, 2106751.	14.9	38
29	Fabrication of new metal phosphonates from tritopic trisphosphonic acid containing methyl groups and auxiliary ligands: syntheses, structures and gas adsorption properties. CrystEngComm, 2013, 15, 1860.	2.6	35
30	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
31	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	9.0	33
32	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie, 2021, 133, 4620-4624.	2.0	33
33	Ultrafine TiO ₂ Nanoparticles Confined in Nâ€Doped Porous Carbon Networks as Anodes of Highâ€Performance Sodiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1516-1522.	3.4	30
34	Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochimica Acta, 2016, 211, 77-82.	5.2	29
35	Exceptional high selectivity of hydrogen/methane separation on a phosphonate-based MOF membrane with exclusion of methane molecules. Chemical Communications, 2017, 53, 9797-9800.	4.1	28
36	A CoSe–C@C core–shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer. Journal of Materials Chemistry A, 2021, 9, 11397-11404.	10.3	28

#	Article	IF	Citations
37	An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves. Physical Chemistry Chemical Physics, 2014, 16, 15800-15805.	2.8	26
38	Enhanced CO ₂ Adsorption Affinity in a NbOâ€type MOF Constructed from a Low ost Diisophthalate Ligand with a Piperazineâ€Ring Bridge. Chemistry - an Asian Journal, 2015, 10, 1864-1869.	3.3	26
39	Kinetic molecular sieving, thermodynamic and structural aspects of gas/vapor sorption on metal organic framework [Ni1.5(4,4′-bipyridine)1.5(H3L)(H2O)3][H2O]7 where H6L = 2,4,6-trimethylbenzene-1,3,5-triyl tris(methylene)triphosphonic acid. Journal of Materials Chemistry A, 2016. 4. 1353-1365.	10.3	26
40	Increasing the CO ₂ /N ₂ Selectivity with a Higher Surface Density of Pyridinic Lewis Basic Sites in Porous Carbon Derived from a Pyridylâ€Ligandâ€Based Metal–Organic Framework. Chemistry - an Asian Journal, 2016, 11, 1913-1920.	3.3	24
41	Boosting ORR Catalytic Activity by Integrating Pyridineâ€N Dopants, a High Degree of Graphitization, and Hierarchical Pores into a MOFâ€Derived Nâ€Doped Carbon in a Tandem Synthesis. Chemistry - an Asian Journal, 2018, 13, 1318-1326.	3.3	24
42	An rht type metal–organic framework based on small cubicuboctahedron supermolecular building blocks and its gas adsorption properties. New Journal of Chemistry, 2013, 37, 3662.	2.8	21
43	Carbonates (bicarbonates)/reduced graphene oxide as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 24645-24650.	10.3	21
44	Tuning the structure of metal phosphonates using uncoordinating methyl group: syntheses, structures and properties of a series of metal diphosphonates. CrystEngComm, 2014, 16, 7043.	2.6	20
45	Solvothermal Metal Metathesis on a Metal–Organic Framework with Constricted Pores and the Study of Gas Separation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25402-25412.	8.0	18
46	Bottomâ€Up Fabrication of a Sandwichâ€Like Carbon/Graphene Heterostructure with Builtâ€In FeNC Dopants as Nonâ€Noble Electrocatalyst for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2020, 15, 432-439.	3.3	17
47	A Series of Exceptionally Robust Luminescent Coordination Polymers Based on a Bipyridyldicarboxylate Ligand and Rareâ€Earthâ€Metal Ions. European Journal of Inorganic Chemistry, 2013, 2013, 6111-6118.	2.0	16
48	Carbon-coated NiSe nanoparticles anchored on reduced graphene oxide: a high-rate and long-life anode for potassium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 3240-3246.	4.9	16
49	Synthesis and characterization of bisphenol sodium complexes: An efficient catalyst for the ring-opening polymerization of l-lactide. Inorganic Chemistry Communication, 2013, 29, 89-93.	3.9	15
50	Porous Carbon Polyhedrons with High-Level Nitrogen-Doping for High-Performance Sodium-Ion Battery Anodes. ChemistrySelect, 2016, 1, 6442-6447.	1.5	14
51	Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Research, 2022, 15, 2083-2091.	10.4	13
52	Investigation of the structure variation of metal diphosphonates with the changing of N-donor auxiliary ligands and their properties. CrystEngComm, 2014, 16, 9104-9115.	2.6	11
53	Synthesis of Mesoporous Î ³ -Al2O3 with Spongy Structure: In-Situ Conversion of Metal-Organic Frameworks and Improved Performance as Catalyst Support in Hydrodesulfurization. Materials, 2018, 11, 1067.	2.9	10
54	Gas Sorption Studies on a Microporous Coordination Polymer Assembled from 2D Grid Layers by Strong π–π Interactions. Chemistry - an Asian Journal, 2014, 9, 901-907.	3.3	9

#	Article	IF	Citations
55	Impact of moderative ligand hydrolysis on morphology evolution and the morphology-dependent breathing effect performance of MIL-53(Al). CrystEngComm, 2018, 20, 2102-2111.	2.6	9
56	Structure tuning of metal phosphonates: Syntheses, structures and characterizations of two new lead (II) trisphosphonates. Inorganic Chemistry Communication, 2014, 39, 51-55.	3.9	8
57	High CO ₂ separation performance on a metal–organic framework composed of nano-cages lined with an ultra-high density of dual-side open metal sites. Materials Advances, 2022, 3, 493-497.	5.4	8
58	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	7
59	Infinite Metal–Carboxylate Nanotube Constructed Metal–Organic Frameworks and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5081-5085.	2.0	6
60	Synthesis, Structures, and Properties of Two Novel Coordination Polymers with a Vâ€shaped Diphosphonate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1845-1849.	1.2	5
61	Zinc Metal–Organic Frameworks Based on a Flexible Benzylaminetetracarboxylic Acid and Bipyridine Colinkers. European Journal of Inorganic Chemistry, 2014, 2014, 3133-3139.	2.0	3
62	Large Single Crystals of Heterosubstituted Titanosilicate JDFâ€L1 Grown Orthogonally in a Regular Levoâ€Spiral Mode. European Journal of Inorganic Chemistry, 2016, 2016, 5185-5188.	2.0	3
63	Syntheses, Structures, and Properties of Copper(II), Cobalt(II), and Cadmium(II) Complexes with Flexible Multicarboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 967-973.	1.2	1