Il-Ju Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the Reliability of Tropical Cyclone Data Using ENSO. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 365-377.	2.3	6
2	A Novel Tropical Cyclone Size Estimation Model Based on a Convolutional Neural Network Using Geostationary Satellite Imagery. Remote Sensing, 2022, 14, 426.	4.0	6
3	Increasing activity of tropical cyclones in East Asia during the mature boreal autumn linked to long-term climate variability. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	11
4	Comparison of Tropical Cyclone Wind Radius Estimates between the KMA, RSMC Tokyo, and JTWC. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 563-576.	2.3	7
5	Recent progress on the seasonal tropical cyclone predictions over the western North Pacific from 2014 to 2020. Tropical Cyclone Research and Review, 2022, 11, 26-35.	2.2	2
6	Recent increase in the occurrences of Christmas typhoons in the Western North Pacific. Scientific Reports, 2021, 11, 7416.	3.3	16
7	Decision-Tree-Based Classification of Lifetime Maximum Intensity of Tropical Cyclones in the Tropical Western North Pacific. Atmosphere, 2021, 12, 802.	2.3	7
8	Characterizing the highest tropical cyclone frequency in the Western North Pacific since 1984. Scientific Reports, 2021, 11, 14350.	3.3	14
9	Global Wave Hindcasts Using the Observationâ€Based Source Terms: Description and Validation. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002493.	3.8	19
10	Possible influence of the warm pool ITCZ on compound climate extremes during the boreal summer. Environmental Research Letters, 2021, 16, 114039.	5.2	5
11	Impacts of the Wave-Dependent Sea Spray Parameterizations on Air–Sea–Wave Coupled Modeling under an Idealized Tropical Cyclone. Journal of Marine Science and Engineering, 2021, 9, 1390.	2.6	8
12	Statistical prediction of typhoonâ€induced accumulated rainfall over the Korean Peninsula based on storm and rainfall data. Meteorological Applications, 2020, 27, e1853.	2.1	11
13	Global warming changes tropical cyclone translation speed. Nature Communications, 2020, 11, 47.	12.8	104
14	Statistical Prediction of Typhoon-Induced Rainfall over China Using Historical Rainfall, Tracks, and Intensity of Typhoon in the Western North Pacific. Remote Sensing, 2020, 12, 4133.	4.0	15
15	An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes. Environmental Research Letters, 2020, 15, 094084.	5.2	19
16	An Index to Better Estimate Tropical Cyclone Intensity Change in the Western North Pacific. Geophysical Research Letters, 2019, 46, 8960-8968.	4.0	9
17	Climate change and tropical cyclone trend. Nature, 2019, 570, E3-E5.	27.8	132
18	Observations Utilizing Korea Ocean Research Stations and their Applications for Process Studies. Bulletin of the American Meteorological Society, 2019, 100, 2061-2075.	3.3	28

Il-Ju Moon

#	Article	IF	CITATIONS
19	Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors. Weather and Forecasting, 2018, 33, 347-365.	1.4	15
20	Physical forces determine the annual bloom intensity of the giant jellyfish Nemopilema nomurai off the coast of Korea. Regional Studies in Marine Science, 2018, 24, 55-65.	0.7	15
21	Impact of typhoons on the <scp>C</scp> hangjiang plume extension in the <scp>Y</scp> ellow and <scp>E</scp> ast <scp>C</scp> hina <scp>S</scp> eas. Journal of Geophysical Research: Oceans, 2017, 122, 4962-4973.	2.6	19
22	Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Modelling, 2017, 118, 73-93.	2.4	92
23	Second Changma retreat variability in Korea using the available water resources index and relevant largeâ€scale atmospheric circulation. International Journal of Climatology, 2016, 36, 2273-2287.	3.5	4
24	Increasing the highest storm surge in Busan harbor. Journal of Coastal Research, 2016, 75, 760-764.	0.3	3
25	Recent record-breaking high ocean waves induced by typhoons in the seas adjacent to Korea. Journal of Coastal Research, 2016, 75, 1397-1401.	0.3	6
26	Reply to Comment on â€~Roles of interbasin frequency changes in the poleward shifts of maximum intensity location of tropical cyclones'. Environmental Research Letters, 2016, 11, 068002.	5.2	3
27	Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Environmental Research Letters, 2015, 10, 104004.	5.2	36
28	Connection between the genesis number of tropical cyclones over the western North Pacific and summer rainfall over Northeast Asia. Theoretical and Applied Climatology, 2015, 122, 353-363.	2.8	2
29	El Niño and intense tropical cyclones. Nature, 2015, 526, E4-E5.	27.8	11
30	Responses of coastal waters in the Yellow Sea to Typhoon Bolaven. Journal of Coastal Research, 2014, 70, 278-283.	0.3	14
31	Typhoon and storm surge intensity changes in a warming climate around the Korean Peninsula. Natural Hazards, 2013, 66, 1405-1429.	3.4	25
32	Relationship between the frequency of tropical cyclones in Taiwan and the Pacific/North American pattern. Dynamics of Atmospheres and Oceans, 2013, 63, 131-141.	1.8	6
33	Two climate factors in May that affect Korean rainfall in September. Acta Oceanologica Sinica, 2013, 32, 32-47.	1.0	3
34	A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact. Atmosphere, 2013, 23, 205-220.	0.3	4
35	Influence of the Western Pacific teleconnection pattern on Western North Pacific tropical cyclone activity. Dynamics of Atmospheres and Oceans, 2012, 57, 1-16.	1.8	29
36	Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons. Progress in Oceanography, 2012, 105, 61-66.	3.2	36

Il-Ju Moon

#	Article	IF	CITATIONS
37	Changes in tropical cyclone activity that has affected Korea since 1999. Natural Hazards, 2012, 62, 971-989.	3.4	10
38	On physical factors that controlled the massive green tide occurrence along the southern coast of the Shandong Peninsula in 2008: A numerical study using a particle-tracking experiment. Journal of Geophysical Research, 2011, 116, .	3.3	57
39	Sea Level Rise due to Global Warming in the Northwestern Pacific and Seas around the Korean Peninsula. Journal of Korean Society of Coastal and Ocean Engineers, 2011, 23, 236-247.	0.4	14
40	Planning and Application of the Korea Ocean Gate Array (KOGA) Program. Ocean and Polar Research, 2010, 32, 213-228.	0.3	1
41	Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Modelling, 2009, 29, 115-127.	2.4	39
42	Impact of the Reduced Drag Coefficient on Ocean Wave Modeling under Hurricane Conditions. Monthly Weather Review, 2008, 136, 1217-1223.	1.4	31
43	A Physics-Based Parameterization of Air–Sea Momentum Flux at High Wind Speeds and Its Impact on Hurricane Intensity Predictions. Monthly Weather Review, 2007, 135, 2869-2878.	1.4	147
44	Impact of a coupled ocean wave–tide–circulation system on coastal modeling. Ocean Modelling, 2005, 8, 203-236.	2.4	96
45	Effect of surface waves on Charnock coefficient under tropical cyclones. Geophysical Research Letters, 2004, 31, .	4.0	47
46	Effect of Surface Waves on Air–Sea Momentum Exchange. Part I: Effect of Mature and Growing Seas. Journals of the Atmospheric Sciences, 2004, 61, 2321-2333.	1.7	79
47	Effect of Surface Waves on Air–Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. Journals of the Atmospheric Sciences, 2004, 61, 2334-2348.	1.7	138
48	Numerical Simulation of Sea Surface Directional Wave Spectra under Hurricane Wind Forcing. Journal of Physical Oceanography, 2003, 33, 1680-1706.	1.7	166