Roderic Lakes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092903/publications.pdf

Version: 2024-02-01

184 12,831 54 106 papers citations h-index g-index

189 189 189 189 10832

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Extremal hinged lattices do not obey the theory of elasticity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2022, 73, 1.	0.7	3
2	Softening of Cosserat sensitivity in a foam: Warp effects. International Journal of Mechanical Sciences, 2021, 192, 106125.	3.6	9
3	The corner element in classical elasticity and Cosserat elasticity. Journal of Mechanics of Materials and Structures, 2021, 16, 225-235.	0.4	0
4	Experimental tests of rotation sensitivity in Cosserat elasticity and in gravitation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	0.7	1
5	Poisson's Ratio and Modulus of Gyroid Lattices. Physica Status Solidi (B): Basic Research, 2021, 258, 2100081.	0.7	8
6	Observation of Squeeze–Twist Coupling in a Chiral 3D Isotropic Lattice. Physica Status Solidi (B): Basic Research, 2020, 257, 1900140.	0.7	14
7	Nonclassical Chiral Elasticity of the Gyroid Lattice. Physical Review Letters, 2020, 125, 205502.	2.9	16
8	Large stiffness thermoformed open cell foams with auxeticity. Applied Materials Today, 2020, 20, 100775.	2.3	18
9	Composites and Metamaterials. , 2020, , .		35
10	Wood Moisture-Induced Swelling at the Cellular Scale—Ab Intra. Forests, 2019, 10, 996.	0.9	29
11	Cubic negative stiffness lattice structure for energy absorption: Numerical and experimental studies. International Journal of Solids and Structures, 2019, 178-179, 127-135.	1.3	61
12	Viscoelastic properties of fused filament fabrication parts. Additive Manufacturing, 2019, 28, 704-710.	1.7	7
13	Cosserat elastic lattices. Meccanica, 2019, 54, 1983-1999.	1.2	22
14	Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling. Journal of Elasticity, 2019, 137, 101-115.	0.9	30
15	Flexible Cube Tilt Lattice with Anisotropic Cosserat Effects and Negative Poisson's Ratio. Physica Status Solidi (B): Basic Research, 2019, 256, 1800512.	0.7	12
16	Cosserat Effects in Achiral and Chiral Cubic Lattices. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	1.1	12
17	Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	0.7	20
18	The two-dimensional elasticity of a chiral hinge lattice metamaterial. International Journal of Solids and Structures, 2018, 141-142, 254-263.	1.3	21

#	Article	IF	CITATIONS
19	Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice. Physical Review Letters, 2018, 120, 065501.	2.9	55
20	Strong re-entrant cellular structures with negative Poisson's ratio. Journal of Materials Science, 2018, 53, 3493-3499.	1.7	149
21	Extreme Cosserat elastic cube structure with large magnitude of negative Poisson's ratio. Journal of Mechanics of Materials and Structures, 2018, 13, 93-101.	0.4	18
22	Measurement of the stiffening parameter for stimuli-responsive hydrogels. Acta Mechanica, 2018, 229, 3715-3725.	1.1	1
23	Stability of Cosserat solids: size effects, ellipticity and waves. Journal of Mechanics of Materials and Structures, 2018, 13, 83-91.	0.4	17
24	Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson's ratio. Smart Materials and Structures, 2017, 26, 025014.	1.8	53
25	Negative-Poisson's-Ratio Materials: Auxetic Solids. Annual Review of Materials Research, 2017, 47, 63-81.	4.3	299
26	Lumped negative stiffness damper for absorption of flexural waves in a rod. Smart Materials and Structures, 2017, 26, 045022.	1.8	5
27	Simulations of thermoelastic triangular cell lattices with bonded joints by finite element analysis. Extreme Mechanics Letters, 2017, 12, 101-107.	2.0	18
28	Observation of Cosserat Elastic Effects in a Tetragonal Negative Poisson's Ratio Lattice. Physica Status Solidi (B): Basic Research, 2017, 254, 1600840.	0.7	14
29	Chiral behavior in rat tail tendon fascicles. Journal of Biomechanics, 2017, 64, 206-211.	0.9	15
30	Threeâ€Dimensional Stiff Cellular Structures With Negative Poisson's Ratio. Physica Status Solidi (B): Basic Research, 2017, 254, 1600785.	0.7	30
31	Strong Cosserat elastic effects in a unidirectional composite. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	0.7	13
32	Stiff square structure with a negative Poisson's ratio. Materials Letters, 2017, 188, 149-151.	1.3	34
33	Chiral threeâ€dimensional isotropic lattices with negative Poisson's ratio. Physica Status Solidi (B): Basic Research, 2016, 253, 1243-1251.	0.7	121
34	Physical meaning of elastic constants in Cosserat, void, and microstretch elasticity. Journal of Mechanics of Materials and Structures, 2016, 11, 217-229.	0.4	38
35	Cosserat elasticity of negative Poisson's ratio foam: experiment. Smart Materials and Structures, 2016, 25, 054004.	1.8	41
36	Chiral three-dimensional lattices with tunable Poisson's ratio. Smart Materials and Structures, 2016, 25, 054005.	1.8	117

#	Article	IF	CITATIONS
37	The effects of composition, temperature, and annealing on the rheological properties of InZn in situ composites. Rheologica Acta, 2016, 55, 335-341.	1.1	O
38	Negative Poisson's ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study. Journal of Materials Science, 2016, 51, 7029-7037.	1.7	37
39	Reduced warp in torsion of reticulated foam due to Cosserat elasticity: experiment. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	0.7	4
40	Static and dynamic effects of chirality in dielectric media. Modern Physics Letters B, 2016, 30, 1650319.	1.0	2
41	A bi-material structure with Poisson's ratio tunable from positive to negative via temperature control. Materials Letters, 2016, 181, 285-288.	1.3	45
42	Enhancement in piezoelectric sensitivity via negative structural stiffness. Journal of Intelligent Material Systems and Structures, 2016, 27, 2568-2573.	1.4	6
43	Experimental Cosserat elasticity in open-cell polymer foam. Philosophical Magazine, 2016, 96, 93-111.	0.7	65
44	A unit cell structure with tunable Poisson's ratio from positive to negative. Materials Letters, 2016, 164, 456-459.	1.3	48
45	Third-rank piezoelectricity in isotropic chiral solids. Applied Physics Letters, 2015, 106, .	1.5	7
46	Bending of a Cosserat Elastic Bar of Square Cross Section: Theory and Experiment. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	48
47	Shear loads induce cellular damage in tendon fascicles. Journal of Biomechanics, 2015, 48, 3299-3305.	0.9	13
48	The resonant ultrasound spectroscopy method for determining the Poisson \times^3 s ratio of spheres over the full range. Materials Letters, 2015, 143, 31-34.	1.3	5
49	Shear load transfer in high and low stress tendons. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 109-120.	1.5	17
50	Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices. Physica Status Solidi (B): Basic Research, 2015, 252, 1431-1434.	0.7	115
51	Reciprocity failure in piezoelectric polymer composite. Physica Scripta, 2015, 90, 085807.	1.2	3
52	Temperature and Substrate Dependence of Piezoelectric Sensitivity for PVDF Films. Ferroelectrics, 2015, 481, 1-9.	0.3	16
53	Buckling Mode Jump at Very Close Load Values in Unattached Flat-End Columns: Theory and Experiment. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	16
54	A sensitive piezoelectric composite lattice: Experiment. Physica Status Solidi (B): Basic Research, 2014, 251, 349-353.	0.7	11

#	Article	IF	CITATIONS
55	Piezoelectric composite lattices with high sensitivity. Philosophical Magazine Letters, 2014, 94, 37-44.	0.5	9
56	Stiff, strong, zero thermal expansion lattices via material hierarchy. Composite Structures, 2014, 107, 654-663.	3.1	69
57	Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. International Journal of Mechanics and Materials in Design, 2013, 9, 213-225.	1.7	46
58	Effect of Age and Exercise on the Viscoelastic Properties of Rat Tail Tendon. Annals of Biomedical Engineering, 2013, 41, 1120-1128.	1.3	46
59	Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. International Journal of Solids and Structures, 2013, 50, 2416-2423.	1.3	76
60	Mechanical Compromise of Partially Lacerated Flexor Tendons. Journal of Biomechanical Engineering, 2013, 135, 011001.	0.6	7
61	Column dampers with negative stiffness: high damping at small amplitude. Smart Materials and Structures, 2013, 22, 084013.	1.8	39
62	Stiff, strong zero thermal expansion lattices via the Poisson effect. Journal of Materials Research, 2013, 28, 2499-2508.	1,2	23
63	The properties of copper foams with negative Poisson's ratio via resonant ultrasound spectroscopy. Physica Status Solidi (B): Basic Research, 2013, 250, 1983-1987.	0.7	37
64	The properties of copper foams with negative Poisson's ratio via resonant ultrasound spectroscopy. Physica Status Solidi (B): Basic Research, 2013, 250, .	0.7	8
65	Time-Dependent Ultrasound Echo Changes Occur in Tendon During Viscoelastic Testing. Journal of Biomechanical Engineering, 2012, 134, 111006.	0.6	5
66	Giant enhancement in effective piezoelectric sensitivity by pyroelectric coupling. Europhysics Letters, 2012, 98, 47001.	0.7	1
67	Resonant ultrasound spectroscopy of cubes over the full range of Poisson's ratio. Review of Scientific Instruments, 2012, 83, 113902.	0.6	5
68	Temperature insensitive negative Poisson's ratios in isotropic alloys near a morphotropic phase boundary. Applied Physics Letters, 2012, 101, .	1.5	31
69	Stable singular or negative stiffness systems in the presence of energy flux. Philosophical Magazine Letters, 2012, 92, 226-234.	0.5	9
70	Enhanced dielectric and piezoelectric properties of $\langle i \rangle x \langle i \rangle BaZrO3-(1a^2 \langle i \rangle x \langle i \rangle)BaTiO3$ ceramics. Journal of Applied Physics, 2012, 111, .	1.1	121
71	Stiff lattices with zero thermal expansion. Journal of Intelligent Material Systems and Structures, 2012, 23, 1263-1268.	1.4	36
72	Damage Mechanics of Porcine Flexor Tendon: Mechanical Evaluation and Modeling. Annals of Biomedical Engineering, 2012, 40, 1692-1707.	1.3	29

#	Article	IF	CITATIONS
73	Quantification of collagen organization using fractal dimensions and Fourier transforms. Acta Histochemica, 2012, 114, 140-144.	0.9	52
74	Dielectric and viscoelastic properties of KNbO3 doped BaTiO3. Journal of Applied Physics, 2011, 109, .	1.1	8
75	Poisson's ratio and modern materials. Nature Materials, 2011, 10, 823-837.	13.3	1,612
76	Extreme anelastic responses in Zn80Al20 matrix composite materials containing BaTiO3 inclusion. Scripta Materialia, 2011, 65, 288-291.	2.6	5
77	Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting. Journal of Materials Science, 2011, 46, 2991-2997.	1.7	36
78	Viscoelastic, dielectric, and thermal properties of BaTiO ₃ â€3%KNbO ₃ . Physica Status Solidi (B): Basic Research, 2011, 248, 158-166.	0.7	6
79	Viscoelastic sigmoid anomalies in BaZrO ₃ –BaTiO ₃ near phase transformations due to negative stiffness heterogeneity. Journal of Materials Research, 2011, 26, 1446-1452.	1.2	13
80	Giant anelastic responses in (BaZrO ₃ -ZnO)-BaTiO ₃ composite materials. Europhysics Letters, 2011, 93, 66003.	0.7	5
81	Sharp low frequency dissipative effects in tetragonal BaTiO3 ceramics. Journal of Applied Physics, 2010, 107, 023514.	1.1	4
82	Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology, 2010, 47, 1-14.	1.2	64
83	Anelastic anomalies and negative Poisson's ratio in tetragonal BaTiO3 ceramics. Applied Physics Letters, 2010, 96, 141904.	1.5	21
84	Softening of bulk modulus and negative Poisson ratio in barium titanate ceramic near the Curie point. Philosophical Magazine Letters, 2010, 90, 23-33.	0.5	58
85	Constitutive equations for ligament and other soft tissue: evaluation by experiment. Acta Mechanica, 2009, 205, 23-33.	1.1	29
86	Viscoelastic Relaxation and Recovery of Tendon. Annals of Biomedical Engineering, 2009, 37, 1131-1140.	1.3	99
87	Creep and creep recovery of cast aluminum alloys. Mechanics of Time-Dependent Materials, 2009, 13, 303-315.	2.3	7
88	Strong, Ductile Magnesium-Zinc Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3038-3045.	1.1	93
89	Broadband Viscoelastic Spectroscopy: A New Technique for Characterizing Rheological Behavior of Solid Foods. International Journal of Food Properties, 2009, 12, 102-113.	1.3	4
90	Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time–temperature superposition. Rheologica Acta, 2008, 47, 777-786.	1.1	55

#	Article	IF	CITATIONS
91	Broadband viscoelastic spectroscopy measurement of mechanical loss and modulus of polycrystalline BaTiO ₃ vs. temperature and frequency. Physica Status Solidi (B): Basic Research, 2008, 245, 2422-2432.	0.7	4
92	Negative stiffness and enhanced damping of individual multiwalled carbon nanotubes. Physical Review B, 2008, 77, .	1.1	33
93	Study of Bolt Load Loss in Bolted Aluminum Joints. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 48-54.	0.8	26
94	Mechanical Instabilities of Individual Multiwalled Carbon Nanotubes under Cyclic Axial Compression. Nano Letters, 2007, 7, 1149-1154.	4.5	76
95	Composite Materials with Viscoelastic Stiffness Greater Than Diamond. Science, 2007, 315, 620-622.	6.0	160
96	Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Applied Physics Letters, 2007, 90, 221905.	1.5	188
97	Stability of elastic material with negative stiffness and negative Poisson's ratio. Physica Status Solidi (B): Basic Research, 2007, 244, 1008-1026.	0.7	40
98	Anomalies in stiffness and damping of a 2D discrete viscoelastic system due to negative stiffness components. Thin Solid Films, 2007, 515, 3171-3178.	0.8	15
99	Negative incremental bulk modulus in foams. Philosophical Magazine Letters, 2006, 86, 651-659.	0.5	52
100	Generalized solution for predicting relaxation from creep in soft tissue: Application to ligament. International Journal of Mechanical Sciences, 2006, 48, 662-673.	3.6	14
101	On Poisson's Ratio in Linearly Viscoelastic Solids. Journal of Elasticity, 2006, 85, 45-63.	0.9	162
102	Viscoelastic characterization of selected foods over an extended frequency range. Rheologica Acta, 2006, 46, 131-142.	1.1	23
103	Two-dimensional viscoelastic discrete triangular system with negative-stiffness components. Philosophical Magazine Letters, 2006, 86, 99-112.	0.5	12
104	Internal friction due to negative stiffness in the indium–thallium martensitic phase transformation. Philosophical Magazine, 2006, 86, 4285-4303.	0.7	26
105	Creep and Relaxation in Ligament: Theory, Methods and Experiment. , 2006, , 379-397.		4
106	Modeling Deformation-Induced Fluid Flow in Cortical Bone?s Canalicular?Lacunar System. Annals of Biomedical Engineering, 2005, 33, 7-25.	1.3	65
107	Design of an Artificial Intervertebral Disc Exhibiting a Negative Poisson's Ratio. Frontiers in Forests and Global Change, 2005, 24, 127-138.	0.6	45
108	Internal Friction Study of a Composite with a Negative Stiffness Constituent. Journal of Materials Research, 2005, 20, 2523-2533.	1.2	11

#	Article	IF	CITATIONS
109	Composites with Inclusions of Negative Bulk Modulus: Extreme Damping and Negative Poisson's Ratio. Journal of Composite Materials, 2005, 39, 1645-1657.	1.2	96
110	Logarithmic pulse generator for long-term creep and relaxation testing. Review of Scientific Instruments, 2005, 76, 056102.	0.6	0
111	Earlywood and latewood elastic properties in loblolly pine. Holzforschung, 2005, 59, 531-538.	0.9	60
112	Stable extremely-high-damping discrete viscoelastic systems due to negative stiffness elements. Applied Physics Letters, 2004, 84, 4451-4453.	1.5	46
113	Creep Behavior of Al-Si Die-Cast Alloys. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 378-383.	0.8	15
114	Negative stiffness-induced extreme viscoelastic mechanical properties: stability and dynamics. Philosophical Magazine, 2004, 84, 3785-3801.	0.7	35
115	Anelastic instability in composites with negative stiffness inclusions. Philosophical Magazine Letters, 2004, 84, 803-810.	0.5	16
116	Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament. Annals of Biomedical Engineering, 2004, 32, 306-312.	1.3	90
117	Application of Nonlinear Superposition to Creep and Relaxation of Commercial Die-Casting Aluminum Alloys. Mechanics of Time-Dependent Materials, 2004, 8, 385-402.	2.3	2
118	Extreme stiffness systems due to negative stiffness elements. American Journal of Physics, 2004, 72, 40-50.	0.3	99
119	Stability of negative stiffness viscoelastic systems. Quarterly of Applied Mathematics, 2004, 63, 34-55.	0.5	25
120	Viscoelastic measurement techniques. Review of Scientific Instruments, 2004, 75, 797-810.	0.6	162
121	The viscoelastic behavior of \hat{l}^2 -In3Sn and the nature of the high-temperature background. Journal of Materials Science, 2003, 38, 2747-2754.	1.7	9
122	Interrelation of creep and relaxation for nonlinearly viscoelastic materials: application to ligament and metal. Rheologica Acta, 2003, 42, 557-568.	1.1	39
123	Size effects in the elasticity and viscoelasticity of bone. Biomechanics and Modeling in Mechanobiology, 2003, 1, 295-301.	1.4	50
124	Resonant ultrasound spectroscopy in shear mode. Review of Scientific Instruments, 2003, 74, 1371-1373.	0.6	23
125	Micromechanically Based Poroelastic Modeling of Fluid Flow in Haversian Bone. Journal of Biomechanical Engineering, 2003, 125, 25-37.	0.6	81
126	Analysis of High Volume Fraction Irregular Particulate Damping Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 174-178.	0.8	17

#	Article	IF	Citations
127	Investigation of bovine bone by resonant ultrasound spectroscopy and transmission ultrasound. Biomechanics and Modeling in Mechanobiology, 2002, 1, 165-175.	1.4	28
128	Application of nonlinear viscoelastic models to describe ligament behavior. Biomechanics and Modeling in Mechanobiology, 2002, 1, 45-57.	1.4	133
129	Influence of Cell Size on Re-Entrant Transformation of Negative Poisson's Ratio Reticulated Polyurethane Foams. Frontiers in Forests and Global Change, 2001, 20, 373-385.	0.6	48
130	Elastic and viscoelastic behavior of chiral materials. International Journal of Mechanical Sciences, 2001, 43, 1579-1589.	3.6	117
131	Negative Poisson's ratio polyethylene foams. Journal of Materials Science, 2001, 36, 5885-5893.	1.7	66
132	A Broadband Viscoelastic Spectroscopic Study of Bovine Bone: Implications for Fluid Flow. Annals of Biomedical Engineering, 2001, 29, 719-728.	1.3	38
133	Nonlinear Ligament Viscoelasticity. Annals of Biomedical Engineering, 2001, 29, 908-914.	1.3	222
134	Extreme damping in composite materials with negative-stiffness inclusions. Nature, 2001, 410, 565-567.	13.7	422
135	Extreme damping in compliant composites with a negative-stiffness phase. Philosophical Magazine Letters, 2001, 81, 95-100.	0.5	141
136	Extreme Damping in Composite Materials with a Negative Stiffness Phase. Physical Review Letters, 2001, 86, 2897-2900.	2.9	201
137	Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. Journal of Applied Physics, 2001, 90, 6458-6465.	1.1	65
138	Viscoelastic Properties of Cortical Bone. , 2001, , 11-1-11-15.		16
139	Development of a low-cycle fatigue life curve for 80ln15Pb5Ag. Journal of Electronic Materials, 2000, 29, 1084-1089.	1.0	2
140	Viscoelastic Dissipation in Compact Bone: Implications for Stress-Induced Fluid Flow in Bone. Journal of Biomechanical Engineering, 2000, 122, 166-172.	0.6	90
141	Viscoelastic behavior of 80In15Pb5Ag and 50Sn50Pb alloys: Experiment and modeling. Journal of Applied Physics, 2000, 87, 1135-1140.	1.1	11
142	Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Review of Scientific Instruments, 2000, 71, 2855-2861.	0.6	89
143	Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments. Journal of Biomechanical Engineering, 1999, 121, 612-615.	0.6	81
144	Development of stress/strain curves for 80In15Pb5Ag. Journal of Electronic Materials, 1999, 28, 1084-1087.	1.0	2

#	Article	IF	Citations
145	Anisotropic polyurethane foam with Poisson'sratio greater than 1. Journal of Materials Science, 1997, 32, 2397-2401.	1.7	51
146	Viscoelastic properties of bamboo. Journal of Materials Science, 1997, 32, 2693-2697.	1.7	37
147	Moisture ingression in honeycomb core sandwich panels. Journal of Materials Engineering and Performance, 1997, 6, 732-736.	1.2	9
148	Viscoelastic behaviour in indium alloys: InSn, InBi, InCd and InSnCd. Journal of Materials Science, 1996, 31, 6577-6581.	1.7	11
149	Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis. International Journal of Fracture, 1996, 80, 73-83.	1.1	337
150	Viscoelastic behaviour in indium-tin alloys over a wide range of frequencies and times. Philosophical Magazine Letters, 1996, 74, 227-232.	0.5	42
151	Observation of the retina using the tandem scanning confocal microscope. Scanning, 1996, 18, 362-366.	0.7	3
152	On the torsional properties of single osteons. Journal of Biomechanics, 1995, 28, 1409-1410.	0.9	65
153	Apparatus for measuring viscoelastic properties over ten decades: Refinements. Review of Scientific Instruments, 1995, 66, 5292-5297.	0.6	52
154	Composite Materials Which Exhibit High Stiffness and High Viscoelastic Damping. Journal of Composite Materials, 1995, 29, 1823-1833.	1.2	73
155	Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. Journal of Materials Science, 1994, 29, 6413-6419.	1.7	148
156	Advances in negative Poisson's ratio materials. Advanced Materials, 1993, 5, 293-296.	11.1	418
157	Materials with structural hierarchy. Nature, 1993, 361, 511-515.	13.7	1,197
158	Design Considerations for Materials with Negative Poisson's Ratios. Journal of Mechanical Design, Transactions of the ASME, 1993, 115, 696-700.	1.7	119
159	Saint-Venant End Effects for Materials With Negative Poisson's Ratios. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 744-746.	1.1	20
160	Non-linear properties of metallic cellular materials with a negative Poisson's ratio. Journal of Materials Science, 1992, 27, 5375-5381.	1.7	1
161	Holographic study of conventional and negative Poisson's ratio metallic foams: elasticity, yield and micro-deformation. Journal of Materials Science, 1991, 26, 5397-5402.	1.7	29
162	Holographic study of conventional and negative Poisson's ratio metallic foams: elasticity, yield and micro-deformation. Journal of Materials Science, 1991, 26, 5397-5402.	1.7	17

#	Article	IF	Citations
163	Fracture mechanics of bone with short cracks. Journal of Biomechanics, 1990, 23, 967-975.	0.9	65
164	Apparatus for Determining the Viscoelastic Properties of Materials Over Ten Decades of Frequency and Time. Journal of Rheology, 1989, 33, 1231-1249.	1.3	37
165	Characterization of high-loss viscoelastic elastomers. Journal of Materials Science, 1988, 23, 3660-3665.	1.7	13
166	Negative Poisson's ratio polymeric and metallic foams. Journal of Materials Science, 1988, 23, 4406-4414.	1.7	332
167	<i>Response</i> : Negative Poisson's Ratio Materials. Science, 1987, 238, 551-551.	6.0	31
168	Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent. Journal of Biomechanics, 1986, 19, 385-397.	0.9	149
169	Holographic screening method for microelastic solids. Journal of Materials Science, 1985, 20, 2882-2888.	1.7	24
170	Creep of posterior dental composites. Journal of Biomedical Materials Research Part B, 1985, 19, 85-95.	3.0	34
171	Creep of conventional and microfilled dental composites. Journal of Biomedical Materials Research Part B, 1984, 18, 15-24.	3.0	41
172	Dynamical Study of Couple Stress Effects in Human Compact Bone. Journal of Biomechanical Engineering, 1982, 104, 6-11.	0.6	60
173	Noncentrosymmetry in micropolar elasticity. International Journal of Engineering Science, 1982, 20, 1161-1167.	2.7	162
174	Transient Study of Couple Stress Effects in Compact Bone: Torsion. Journal of Biomechanical Engineering, 1981, 103, 275-279.	0.6	75
175	Prediction of anelastic loss in piezoelectric solids: Effect of geometry. Applied Physics Letters, 1979, 34, 729-730.	1.5	2
176	Viscoelastic properties of wet cortical boneâ€"I. Torsional and biaxial studies. Journal of Biomechanics, 1979, 12, 657-678.	0.9	164
177	Viscoelastic properties of wet cortical bone—II. Relaxation mechanisms. Journal of Biomechanics, 1979, 12, 679-687.	0.9	107
178	Viscoelastic properties of wet cortical boneâ€"III. A non-linear constitutive equation. Journal of Biomechanics, 1979, 12, 689-698.	0.9	58
179	Interrelationships among the viscoelastic functions for anisotropic solids: Application to calcified tissues and related systems. Journal of Biomechanics, 1974, 7, 259-270.	0.9	31
180	Note: Measurement of Normal Stresses. Journal of Rheology, 1971, 15, 189-192.	0.6	6

#	Article	IF	CITATIONS
181	Constitutive Relations. , 0, , 14-54.		1
182	Viscoelastic Stress and Deformation Analysis. , 0, , 111-144.		0
183	Viscoelastic damping and wave cut off of titanium alloy and lattices. Advanced Engineering Materials, 0, , .	1.6	0
184	Cosserat shape effects in the bending of foams. Mechanics of Advanced Materials and Structures, 0, , 1-5.	1.5	3