
Adam Kubiak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced removal of vanadium(V) from acidic streams using binary oxide systems of TiO2-ZrO2 and TiO2-ZnO type. Separation and Purification Technology, 2022, 280, 119916.	3.9	10
2	A novel microwave-assisted strategy to fabricate multifunctional photoactive titania-based heterostructures with enhanced activity. Materials Research Bulletin, 2022, 147, 111633.	2.7	6
3	The In Situ Hydrothermal and Microwave Syntheses of Zinc Oxides for Functional Cement Composites. Materials, 2022, 15, 1069.	1.3	8
4	Design and Microwave-Assisted Synthesis of TiO2-Lanthanides Systems and Evaluation of Photocatalytic Activity under UV-LED Light Irradiation. Catalysts, 2022, 12, 8.	1.6	8
5	Synthesis, characterization and aging tests of functional rigid polymeric biocomposites with kraft lignin. International Journal of Biological Macromolecules, 2021, 178, 344-353.	3.6	13
6	Controlled microwave-assisted and pH-affected growth of ZnO structures and their photocatalytic performance. Powder Technology, 2021, 386, 221-235.	2.1	22
7	New lignin-based hybrid materials as functional additives for polymer biocomposites: From design to application. International Journal of Biological Macromolecules, 2021, 190, 624-635.	3.6	15
8	The TiO2-ZnO Systems with Multifunctional Applications in Photoactive Processes—Efficient Photocatalyst under UV-LED Light and Electrode Materials in DSSCs. Materials, 2021, 14, 6063.	1.3	10
9	Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis. Applied Sciences (Switzerland), 2021, 11, 10160.	1.3	11
10	Physicochemical properties of raw starches and their impact on electrochemical activity – Biomolecule-based anode material. Bioelectrochemistry, 2020, 136, 107619.	2.4	5
11	Hydrothermally Assisted Fabrication of TiO2-Fe3O4 Composite Materials and Their Antibacterial Activity. Materials, 2020, 13, 4715.	1.3	12
12	Synthesis of Titanium Dioxide via Surfactant-Assisted Microwave Method for Photocatalytic and Dye-Sensitized Solar Cells Applications. Catalysts, 2020, 10, 586.	1.6	26
13	Crystallization of TiO2-MoS2 Hybrid Material under Hydrothermal Treatment and Its Electrochemical Performance. Materials, 2020, 13, 2706.	1.3	8
14	Influence of MgO-Lignin Dual Component Additives on Selected Properties of Low Density Polyethylene. Polymers, 2020, 12, 1156.	2.0	9
15	Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals, 2020, 10, 493.	1.0	18
16	Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Applied Surface Science, 2020, 520, 146344.	3.1	106
17	Synthesis of highly crystalline photocatalysts based on TiO2 and ZnO for the degradation of organic impurities under visible-light irradiation. Adsorption, 2019, 25, 309-325.	1.4	43
18	Hydrothermal-assisted synthesis of highly crystalline titania–copper oxide binary systems with enhanced antibacterial properties. Materials Science and Engineering C, 2019, 104, 109839.	3.8	14

Adam Kubiak

#	Article	IF	CITATIONS
19	Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties. Applied Surface Science, 2019, 463, 791-801.	3.1	64
20	The controlled oxidation of kraft lignin in mild conditions using ionic liquid as a crucial point in fabrication of antibacterial hybrid materials. Journal of Molecular Liquids, 2019, 274, 370-378.	2.3	18
21	Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials, 2018, 11, 2295.	1.3	49
22	An Active Anode Material Based on Titania and Zinc Oxide Hybrids Fabricated via a Hydrothermal Route: Comprehensive Physicochemical and Electrochemical Evaluations. Journal of the Electrochemical Society, 2018, 165, A3056-A3066.	1.3	3
23	TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials, 2018, 11, 841.	1.3	97