Evan C Bentz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092648/publications.pdf

Version: 2024-02-01

471371 360920 1,232 43 17 35 h-index citations g-index papers 43 43 43 824 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	An overview and sensitivity study of a multimechanistic chloride transport model. Cement and Concrete Research, 1999, 29, 827-837.	4.6	170
2	Shear Strength of Large Concrete Members with FRP Reinforcement. Journal of Composites for Construction, 2010, 14, 637-646.	1.7	141
3	Development of the 2004 Canadian Standards Association (CSA) A23.3 shear provisions for reinforced concrete. Canadian Journal of Civil Engineering, 2006, 33, 521-534.	0.7	98
4	Does the Use of FRP Reinforcement Change the One-Way Shear Behavior of Reinforced Concrete Slabs?. Journal of Composites for Construction, 2008, 12, 125-133.	1.7	94
5	Background to the <i>fib</i> Model Code 2010 shear provisions – part I: beams and slabs. Structural Concrete, 2013, 14, 195-203.	1.5	78
6	ACI-DAfStb Databases for Shear Tests on Slender Reinforced Concrete Beams with Stirrups. ACI Structural Journal, 2014, 111, .	0.3	78
7	Explaining the Riddle of Tension Stiffening Models for Shear Panel Experiments. Journal of Structural Engineering, 2005, 131, 1422-1425.	1.7	71
8	An adequate theory for the shear strength of reinforced concrete structures. Magazine of Concrete Research, 2008, 60, 635-650.	0.9	69
9	Background to <i>fib</i> Model Code 2010 shear provisions – part II: punching shear. Structural Concrete, 2013, 14, 204-214.	1.5	55
10	Distributed Sensing for Shrinkage and Tension Stiffening Measurement. ACI Structural Journal, 2017, 114, .	0.3	43
11	Influence of Clamping Stresses in the Shear Strength of Concrete Slabs Under Uniform Loads. Journal of Earthquake Engineering, 2009, 13, 1-17.	1.4	26
12	Evaluation of CANDU NPP containment structure subjected to aging and internal pressure increase. Nuclear Engineering and Design, 2017, 314, 82-92.	0.8	25
13	Finite/discrete element modelling of reversed cyclic tests on unreinforced masonry structures. Engineering Structures, 2017, 138, 159-169.	2.6	25
14	Strength of steel fiber reinforced concrete beams in pure torsion. Structural Concrete, 2018, 19, 684-694.	1.5	23
15	Distributed Sensing in Large Reinforced Concrete Shear Test. ACI Structural Journal, 2019, 116, .	0.3	23
16	Three-Parameter Kinematic Theory for Shear Behavior of Continuous Deep Beams. ACI Structural Journal, 2015, 112, .	0.3	20
17	Influence of Longitudinal Reinforcement on One-Way Shear in Slabs and Wide Beams. Journal of Structural Engineering, 2009, 135, 78-87.	1.7	19
18	Reversed Cyclic Experiments on Shear Stress Transfer across Cracks in Reinforced Concrete Elements. ACI Structural Journal, 2016, 113, .	0.3	15

#	Article	IF	Citations
19	Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete. ACI Structural Journal, 2017, 114, .	0.3	15
20	Shrinkage and creep strains of concrete exposed to low relative humidity and high temperature environments. Nuclear Engineering and Design, 2019, 352, 110154.	0.8	14
21	Influence of High-Strength Bars on Shear Response of Containment Walls. ACI Structural Journal, 2016, 113, .	0.3	12
22	Model for Assessment of Cracked Reinforced Concrete Membrane Elements Subjected to Shear and Axial Loads. ACI Structural Journal, 2018, 115, .	0.3	12
23	Method for evaluation of concrete containment structure subjected to earthquake excitation and internal pressure increase. Earthquake Engineering and Structural Dynamics, 2018, 47, 1544-1565.	2.5	11
24	Nonlinear sectional analysis of reinforced concrete beams and shells subjected to pure torsion. Computers and Structures, 2019, 222, 118-132.	2.4	11
25	Response of Heavily Reinforced High-Strength Concrete Coupling Beams. ACI Structural Journal, 2017, 114, .	0.3	11
26	Finite/discrete element model of tension stiffening in GFRP reinforced concrete. Engineering Structures, 2016, 111, 494-504.	2.6	10
27	On shear in members without stirrups and the application of energyâ€based methods in light of 30 years of test observations. Structural Concrete, 2019, 20, 1481-1489.	1.5	9
28	Empirical Modeling of Cracking in Reinforced Concrete. ACI Structural Journal, 2019, 116, .	0.3	9
29	Bridge model updating using distributed sensor data. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2017, 170, 74-86.	0.3	8
30	Effect of Member Size and Tendon Layout on Shear Behavior of Post-Tensioned Beams. ACI Structural Journal, 2019, 116, .	0.3	7
31	Development of a civil infrastructure resilience assessment framework and its application to a nuclear power plant. Structure and Infrastructure Engineering, 2022, 18, 1-14.	2.0	6
32	Shear Response of Prestressed Thin-Webbed Continuous Girders. ACI Structural Journal, 2016, 113, .	0.3	6
33	Assessing beam shear behavior with distributed longitudinal strains. Structural Concrete, 2022, 23, 1555-1571.	1.5	6
34	Shear Response under Reversed Cyclic Loading. ACI Structural Journal, 2016, 113, .	0.3	5
35	Shear Strength of Members without Transverse Reinforcement. , 2009, , .		2
36	DESIGN OF INDIRECTLY LOADED LARGE FOOTINGS FOR ONE-WAY SHEAR. ACI Structural Journal, 2016, 113, .	0.3	1

#	Article	IF	CITATIONS
37	Evaluation of the thermal strain of an NPP containment structure during leakage rate tests. Engineering Structures, 2019, 201, 109761.	2.6	1
38	Summary of Development and Use of CSA 2004 Shear Design Provisions. , 2006, , 67-80.		1
39	Influence of Shear on Deformations of Coupling Beams. , 2018, , 1156-1163.		1
40	A Mechanics-Based Finite Element for the Analysis of Shear-Critical Slender Reinforced Beams and Columns. Journal of Structural Engineering, 2022, 148, .	1.7	1
41	Closure to "Explaining the Riddle of Tension Stiffening Models for Shear Panel Experiments―by Evan Bentz. Journal of Structural Engineering, 2007, 133, 151-151.	1.7	O
42	Investigation of Shear Response of Nuclear Power Plant Wall Elements using High Strength Materials. IABSE Symposium Report, 2014, , .	0.0	0
43	Authors' closure on the discussion of the article: "On shear in members without stirrups and the application of energyâ€based methods in light of 30 years of test observations―(discussion by Dönmez et]	TjaETQq1	b0.78431