Yong-Hua Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092562/publications.pdf

Version: 2024-02-01

		304701	345203
79	1,693	22	36
papers	citations	h-index	g-index
0.1	0.1	0.1	1000
91	91	91	1889
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The allotetraploid origin and asymmetrical genome evolution of theÂcommon carp Cyprinus carpio. Nature Communications, 2019, 10, 4625.	12.8	156
2	Cytoplasmic Impact on Cross-Genus Cloned Fish Derived from Transgenic Common Carp (Cyprinus) Tj ETQq0 0 0 510-515.	rgBT /Ove 2.7	rlock 10 Tf 5 88
3	Genetic analysis of "all-fish―growth hormone gene trans ferred carp (Cyprinus carpio L.) and its F1 generation. Science Bulletin, 2001, 46, a1-a4.	1.7	64
4	Direct Phosphorylation and Stabilization of MYC by Aurora B Kinase Promote T-cell Leukemogenesis. Cancer Cell, 2020, 37, 200-215.e5.	16.8	63
5	Zebrafish <i>cyp11c1</i> Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction. Endocrinology, 2020, 161, .	2.8	62
6	Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as RevealedÂby Lifetime Labeling of Germline. Marine Biotechnology, 2019, 21, 217-228.	2.4	55
7	Graphene-Based Anticancer Nanosystem and Its Biosafety Evaluation Using a Zebrafish Model. Biomacromolecules, 2013, 14, 358-366.	5 . 4	54
8	Eaf1 and Eaf2 negatively regulate canonical Wnt/ \hat{l}^2 -catenin signaling. Development (Cambridge), 2013, 140, 1067-1078.	2.5	54
9	Embryonic and genetic manipulation in fish. Cell Research, 2000, 10, 17-27.	12.0	51
10	Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/ \hat{l}^2 -catenin pathway. Nature Communications, 2014, 5, 5368.	12.8	48
11	Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Development Growth and Differentiation, 2005, 47, 323-331.	1.5	45
12	The Germ Cell Nuclear Proteins hnRNP G-T and RBMY Activate a Testis-Specific Exon. PLoS Genetics, 2009, 5, e1000707.	3.5	37
13	High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases. Science Bulletin, 2017, 62, 162-164.	9.0	32
14	Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 2020, 30, 118-126.	5 . 5	32
15	Growth hormone gene transfer in common carp. Aquatic Living Resources, 2003, 16, 416-420.	1.2	31
16	Zebrafish GAPDH can be used as a reference gene for expression analysis in cross-subfamily cloned embryos. Analytical Biochemistry, 2007, 363, 291-293.	2.4	31
17	Double Transgenesis of Humanized fat1 and fat2 Genes Promotes Omega-3 Polyunsaturated Fatty Acids Synthesis in a Zebrafish Model. Marine Biotechnology, 2014, 16, 580-593.	2.4	31
18	Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 780, 86-96.	1.0	31

#	Article	IF	Citations
19	Transcriptional Factors Smad1 and Smad9 Act Redundantly to Mediate Zebrafish Ventral Specification Downstream of Smad5. Journal of Biological Chemistry, 2014, 289, 6604-6618.	3.4	30
20	Solid Matrix-Supported Supercritical CO2 Enhances Extraction of \hat{I}^3 -Linolenic Acid from the Cyanobacterium Arthrospira (Spirulina) platensis and Bioactivity Evaluation of the Molecule in Zebrafish. Marine Drugs, 2019, 17, 203.	4.6	26
21	Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells. Journal of Genetics and Genomics, 2020, 47, 37-47.	3.9	26
22	Targeted Expression in Zebrafish Primordial Germ Cells by Cre/loxP and Gal4/UAS Systems. Marine Biotechnology, 2013, 15, 526-539.	2.4	25
23	Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology, 2020, 161, .	2.8	25
24	Elovl2 But Not Elovl5 Is Essential for the Biosynthesis of Docosahexaenoic Acid (DHA) in Zebrafish: Insight from a Comparative Gene Knockout Study. Marine Biotechnology, 2020, 22, 613-619.	2.4	24
25	Identification of Differentially Expressed Genes Between Cloned and Zygote-Developing Zebrafish (Danio rerio) Embryos at the Dome Stage Using Suppression Subtractive Hybridization1. Biology of Reproduction, 2009, 80, 674-684.	2.7	23
26	A secondâ€generation genetic linkage map for bighead carp (<i><scp>A</scp>ristichthys nobilis</i>) based on microsatellite markers. Animal Genetics, 2014, 45, 699-708.	1.7	23
27	Evaluating estrogenic and anti-estrogenic effect of endocrine disrupting chemicals (EDCs) by zebrafish (Danio rerio) embryo-based vitellogenin 1 ($vtg1$) mRNA expression. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 204, 45-50.	2.6	23
28	Characterization of cDNA encoding immunoglobulin light chain of the mandarin fish (Siniperca) Tj ETQq0 0 0 rgB	T /Overloc 1.2	k 10 Tf 50 38
29	Fish genome manipulation and directional breeding. Science China Life Sciences, 2015, 58, 170-177.	4.9	21
30	Deficiency of lrp4 in zebrafish and human LRP4 mutation induce aberrant activation of Jagged–Notch signaling in fin and limb development. Cellular and Molecular Life Sciences, 2019, 76, 163-178.	5.4	21
31	Depletion of suppressor of cytokine signaling-1a causes hepatic steatosis and insulin resistance in zebrafish. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E849-E859.	3.5	20
32	Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLoS Genetics, 2019, 15, e1008306.	3.5	19
33	A Novel Dietary Source of EPA and DHA: Metabolic Engineering of an Important Freshwater Speciesâ€"Common Carp by fat1-Transgenesis. Marine Biotechnology, 2019, 21, 171-185.	2.4	19
34	Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation. Science China Life Sciences, 2022, 65, 969-987.	4.9	19
35	Characterization of transgene integration pattern in F4 hGH-transgenic common carp (Cyprinus) Tj ETQq1 1 0.78	4314 rgB ⁻ 12.0	Г /Overlock 1 18
36	Activation of GH signaling and GH-independent stimulation of growth in zebrafish by introduction of a constitutively activated GHR construct. Transgenic Research, 2011, 20, 557-567.	2.4	18

#	Article	IF	CITATIONS
37	Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expression, 2018, 18, 157-170.	1.2	18
38	Designing future farmed fishes using genome editing. Science China Life Sciences, 2019, 62, 420-422.	4.9	18
39	Identification of differentially expressed genes from the cross-subfamily cloned embryos derived from zebrafish nuclei and rare minnow enucleated eggs. Theriogenology, 2007, 68, 1282-1291.	2.1	17
40	$\mbox{\ensuremath{\mbox{\sc c}}}\mbox{\sc Cyp11a2-$\sc /i>}\mbox{\sc Is Essential for Oocyte Development and Spermatogonial Stem Cell Differentiation in Zebrafish. Endocrinology, 2022, 163, .}$	2.8	16
41	Knock down of gfp and no tail expression in zebrafish embryo by inÂvivo-transcribed short hairpin RNA with T7 plasmid system. Journal of Biomedical Science, 2007, 14, 767-776.	7.0	15
42	Identification and characterization of a novel gene differentially expressed in zebrafish cross-subfamily cloned embryos. BMC Developmental Biology, 2008, 8, 29.	2.1	15
43	Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Annals of Botany, 2013, 112, 1239-1251.	2.9	15
44	MYC2-Activated <i>TRICHOME BIREFRINGENCE-LIKE37</i> Acetylates Cell Walls and Enhances Herbivore Resistance. Plant Physiology, 2020, 184, 1083-1096.	4.8	15
45	Transcriptional Activity and DNA Methylation Dynamics of the Gal4/UAS System in Zebrafish. Marine Biotechnology, 2015, 17, 593-603.	2.4	14
46	Nanog safeguards early embryogenesis against global activation of maternal \hat{l}^2 -catenin activity by interfering with TCF factors. PLoS Biology, 2020, 18, e3000561.	5.6	14
47	Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique. Molecular Biology Reports, 2008, 35, 139-143.	2.3	13
48	Crossâ€species cloning: influence of cytoplasmic factors on development. Journal of Physiology, 2014, 592, 2375-2379.	2.9	13
49	Comparative expression of zebrafish <i>lats1</i> and <i>lats2</i> and their implication in gastrulation movements. Developmental Dynamics, 2009, 238, 2850-2859.	1.8	12
50	A critical role of foxp3a-positive regulatory T cells in maintaining immune homeostasis in zebrafish testis development. Journal of Genetics and Genomics, 2020, 47, 547-561.	3.9	12
51	Sequences of Transgene Insertion Sites in Transgenic F4 Common Carp. Transgenic Research, 2004, 13, 95-96.	2.4	10
52	Molecular characterization of common carp (Cyprinus carpio) Sonic Hedgehog and discovery of its maternal expression. Development Genes and Evolution, 2007, 217, 299-305.	0.9	7
53	Growing with the world: rapid development of the zebrafish research in China and the China Zebrafish Resource Center. Science China Life Sciences, 2015, 58, 396-399.	4.9	7
54	The onset of foreign gene transcription in nuclear-transferred embryos of fish. Science in China Series C: Life Sciences, 2000, 43, 597-605.	1.3	6

#	Article	IF	CITATIONS
55	Time course of foreign gene integration and expression in transgenic fish embryos. Science Bulletin, 2000, 45, 734-739.	1.7	6
56	Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories. Zebrafish, 2016, 13, S-8-S-18.	1.1	6
57	Next-generation sequencing in thymic epithelial tumors uncovered novel genomic aberration sites and strong correlation between TMB and MSH6 single nucleotide variations. Cancer Letters, 2020, 476, 75-86.	7.2	6
58	Construction of cytoplasmic molecular markers distinguishing Danio rerio from Gobiocypris rarus at high identity domains based on MP-PCR strategy and Sybr Green I detection. Molecular Biology Reports, 2008, 35, 45-50.	2.3	5
59	Identification of differential transcript profiles between mutual crossbred embryos of zebrafish (Danio rerio) and Chinese rare minnow (Gobiocypris rarus) by cDNA-AFLP. Theriogenology, 2008, 70, 1525-1535.	2.1	5
60	A landscape of differentiated biological processes involved in the initiation of sex differentiation in zebrafish. , 2022, 1, 100059.		5
61	Upstream Regulatory Region of Zebrafish lunatic fringe: Isolation and Promoter Analysis. Marine Biotechnology, 2006, 8, 357-365.	2.4	4
62	Cloning and characterization of cytochrome c oxidase subunit I(COXI) in Gobiocypris rarus. DNA Sequence, 2007, 18, 1-8.	0.7	4
63	Sinhcafâ€dependent histone deacetylation is essential for primordial germ cell specification. EMBO Reports, 2022, 23, e54387.	4.5	4
64	Cloning, characterization and promoter analysis of common carphairy/Enhancer-of-split-related gene, her6. Journal of Genetics, 2006, 85, 171-178.	0.7	3
65	Subtractive phage display technology identifies zebrafish marcksb that is required for gastrulation. Gene, 2013, 521, 69-77.	2.2	3
66	Nanog suppresses the expression of vasa by directly regulating $nlk1$ in the early zebrafish embryo. Biochimie, 2017, 142, 93-101.	2.6	3
67	Manipulating and Visualizing the with Transgenic Lines. Methods in Molecular Biology, 2021, 2218, 265-276.	0.9	3
68	Induction of biosynthesis of ketocarotenoid from \hat{l}^2 -carotene in fish embryos. Aquaculture, 2021, 542, 736863.	3.5	3
69	A zebrafish ppar \hat{l}^3 gene deletion reveals a protein kinase network associated with defective lipid metabolism. Functional and Integrative Genomics, 2022, 22, 435-450.	3.5	3
70	Identification of a novel gene K23 over-expressed in fish cross-subfamily cloned embryos. Molecular Biology Reports, 2009, 36, 1375-1380.	2.3	2
71	Cloning of rainbow trout (Oncorhynchus mykiss) histone H3 promoter and the activity analysis in rare minnow (Gobiocypris rarus)*. Progress in Natural Science: Materials International, 2004, 14, 322-326.	4.4	1
72	Cloning and analysis of 16Rabgenes from macronuclear DNA of Euplotes octocarinatus. DNA Sequence, 2005, 16, 260-265.	0.7	0

Yong-Hua Sun

#	Article	IF	CITATIONS
73	国家斑马鱼资æºë¸å¿ƒç®€ä»‹. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2013, 35, 54	9-5550.	0
74	Title is missing!. , 2020, 18, e3000561.		0
75	Title is missing!. , 2020, 18, e3000561.		0
76	Title is missing!. , 2020, 18, e3000561.		0
77	Title is missing!. , 2020, 18, e3000561.		0
78	Title is missing!. , 2020, 18, e3000561.		0
79	Title is missing!. , 2020, 18, e3000561.		0