Cristina Sunol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting Astrocytic Roles in Methylmercury Intoxication. Molecular Neurobiology, 2021, 58, 4293-4308.	4.0	21
2	Manganese-induced neurotoxicity in cerebellar granule neurons due to perturbation of cell network pathways with potential implications for neurodegenerative disorders. Metallomics, 2020, 12, 1656-1678.	2.4	6
3	Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer's Disease Patients. Nutrients, 2019, 11, 1764.	4.1	69
4	Clarified AçaÃ-(<i>Euterpe oleracea</i>) Juice as an Anticonvulsant Agent <i>: In Vitro</i> Mechanistic Study of GABAergic Targets. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-6.	4.0	17
5	Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons. NeuroToxicology, 2018, 69, 278-287.	3.0	12
6	Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies. NeuroToxicology, 2017, 59, 197-209.	3.0	22
7	Long-term and low-dose malathion exposure causes cognitive impairment in adult mice: evidence of hippocampal mitochondrial dysfunction, astrogliosis and apoptotic events. Archives of Toxicology, 2016, 90, 647-660.	4.2	56
8	Attentional performance, impulsivity, and related neurotransmitter systems in apoE2, apoE3, and apoE4 female transgenic mice. Psychopharmacology, 2016, 233, 295-308.	3.1	18
9	Putative adverse outcome pathways relevant to neurotoxicity. Critical Reviews in Toxicology, 2015, 45, 83-91.	3.9	92
10	Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons. Environmental Research, 2015, 140, 37-44.	7.5	61
11	Influence of prenatal exposure to environmental pollutants on human cord blood levels of glutamate. NeuroToxicology, 2014, 40, 102-110.	3.0	13
12	Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology, 2014, 81, 55-63.	4.1	114
13	IrOx–carbon nanotube hybrids: A nanostructured material for electrodes with increased charge capacity in neural systems. Acta Biomaterialia, 2014, 10, 4548-4558.	8.3	35
14	Allopregnanolone and Pregnanolone Analogues Modified in the C Ring: Synthesis and Activity. Journal of Medicinal Chemistry, 2013, 56, 2323-2336.	6.4	11
15	Long term compulsivity on the 5-choice serial reaction time task after acute Chlorpyrifos exposure. Toxicology Letters, 2013, 216, 73-85.	0.8	25
16	Allopregnanolone Prevents Dieldrin-Induced NMDA Receptor Internalization and Neurotoxicity by Preserving GABAA Receptor Function. Endocrinology, 2012, 153, 847-860.	2.8	8
17	Strategies and tools for preventing neurotoxicity: To test, to predict and how to do it. NeuroToxicology, 2012, 33, 796-804.	3.0	26
18	Poor inhibitory control and neurochemical differences in high compulsive drinker rats selected by schedule-induced polydipsia. Psychopharmacology, 2012, 219, 661-672.	3.1	37

CRISTINA SUNOL

#	Article	IF	CITATIONS
19	Differential Estrogenic Effects of the Persistent Organochlorine Pesticides Dieldrin, Endosulfan, and Lindane in Primary Neuronal Cultures. Toxicological Sciences, 2011, 120, 413-427.	3.1	83
20	Homeostatic Regulation of Glutamate Neurotransmission in Primary Neuronal Cultures. Methods in Molecular Biology, 2011, 758, 253-265.	0.9	2
21	Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environmental Toxicology and Chemistry, 2011, 30, 9-21.	4.3	58
22	GABAA receptor and cell membrane potential as functional endpoints in cultured neurons to evaluate chemicals for human acute toxicity. Neurotoxicology and Teratology, 2010, 32, 52-61.	2.4	14
23	Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study. Toxicology and Applied Pharmacology, 2010, 242, 109-118.	2.8	36
24	Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice. International Journal of Alzheimer's Disease, 2010, 2010, 1-17.	2.0	67
25	Reduction of Glutamatergic Neurotransmission by Prolonged Exposure to Dieldrin Involves NMDA Receptor Internalization and Metabotropic Glutamate Receptor 5 Downregulation. Toxicological Sciences, 2010, 113, 138-149.	3.1	26
26	Use of Gene Expression of Neural Markers in Cultured Neural Cells to Identify Developmental Neurotoxicants. Toxicological Sciences, 2010, 113, 1-3.	3.1	2
27	Impulsivity Characterization in the Roman High- and Low-Avoidance Rat Strains: Behavioral and Neurochemical Differences. Neuropsychopharmacology, 2010, 35, 1198-1208.	5.4	135
28	Gene–environment interactions: Neurodegeneration in non-mammals and mammals. NeuroToxicology, 2010, 31, 582-588.	3.0	18
29	Probucol Increases Glutathione Peroxidase-1 Activity and Displays Long-Lasting Protection against Methylmercury Toxicity in Cerebellar Granule Cells. Toxicological Sciences, 2009, 112, 416-426.	3.1	125
30	GABA released from cultured cortical neurons influences the modulation of t-[35S]butylbicyclophosphorothionate binding at the GABAA receptor. European Journal of Pharmacology, 2008, 600, 26-31.	3.5	23
31	Long-term monoamine changes in the striatum and nucleus accumbens after acute chlorpyrifos exposure. Toxicology Letters, 2008, 176, 162-167.	0.8	57
32	Cell viability and proteomic analysis in cultured neurons exposed to methylmercury. Human and Experimental Toxicology, 2007, 26, 263-272.	2.2	47
33	Clozapine and Haloperidol Differently Suppress the MK-801-Increased Glutamatergic and Serotonergic Transmission in the Medial Prefrontal Cortex of the Rat. Neuropsychopharmacology, 2007, 32, 2087-2097.	5.4	167
34	Longâ€ŧerm exposure to dieldrin reduces γâ€aminobutyric acid type A and Nâ€methylâ€Dâ€aspartate receptor function in primary cultures of mouse cerebellar granule cells. Journal of Neuroscience Research, 2007, 85, 3687-3695.	2.9	30
35	Activity of B-Nor Analogues of Neurosteroids on the GABAAReceptor in Primary Neuronal Cultures. Journal of Medicinal Chemistry, 2006, 49, 3225-3234.	6.4	27
36	Demonstration of extensive GABA synthesis in the small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Neurochemistry International, 2006, 48, 572-578.	3.8	23

CRISTINA SUNOL

#	Article	IF	CITATIONS
37	Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. Neuropharmacology, 2006, 50, 25-35.	4.1	113
38	Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. Journal of Neuroscience Research, 2006, 83, 1393-1406.	2.9	36
39	Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebelar granule cells. Journal of Neuroscience Research, 2006, 84, 326-337.	2.9	15
40	Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAAreceptors and niflumic acid-sensitive chloride channels. European Journal of Neuroscience, 2005, 21, 103-112.	2.6	70
41	Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells. Journal of Neuroscience Research, 2005, 79, 545-553.	2.9	68
42	First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. Journal of Neurochemistry, 2004, 91, 796-803.	3.9	48
43	Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Experimental Neurology, 2004, 190, 42-58.	4.1	69
44	Transforming Growth Factor-α Attenuates N-Methyl-D-aspartic Acid Toxicity in Cortical Cultures by Preventing Protein Synthesis Inhibition through an Erk1/2-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 29552-29559.	3.4	26
45	Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices. Life Sciences, 2000, 67, 1219-1231.	4.3	25
46	Effects of the conformationally restricted GABA analogues, Cis-and Trans-4-aminocrotonic acid, on GABA neurotransmission in primary neuronal cultures. Journal of Neuroscience Research, 1999, 57, 95-105.	2.9	19
47	Cytotoxic action of lindane in neocortical GABAergic neurons is primarily mediated by interaction with flunitrazepam-sensitive GABAA receptors. , 1998, 52, 276-285.		10
48	Cytotoxic action of lindane in cerebellar granule neurons is mediated by interaction with inducible GABAB receptors. , 1998, 52, 286-294.		18
49	Allosteric interactions between Î ³ -aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by Î ³ - and δ-hexachlorocyclohexane. European Journal of Pharmacology, 1997, 319, 343-353.	3.5	29
50	Antidepressant Drugs Inhibit a Gial 5-Hydroxytryptamine Transporter in Rat Brain. European Journal of Neuroscience, 1997, 9, 1728-1738.	2.6	46
51	The Mechanism for Hexachlorocyclohexane-Induced Cytotoxicity and Changes in Intracellular Ca2+Homeostasis in Cultured Cerebellar Granule Neurons Is Different for the γ- and δ-Isomers. Toxicology and Applied Pharmacology, 1997, 142, 31-39.	2.8	49
52	Stimulation of Phosphoinositide Hydrolysis by Î ³ - and δ-Hexachlorocyclohexane in Primary Cultures of Cerebellar Granule Cells: Interaction with Glutamate and Carbachol Receptor-Mediated Phosphoinositide Response and Effects of Specific Pharmacological Agents. Pesticide Biochemistry and Physiology, 1996, 55, 64-76.	3.6	0
53	Inhibition of binding by convulsant agents in primary cultures of cerebellar neurons. Developmental Brain Research, 1993, 73, 85-90.	1.7	32
54	Repeated lindane exposure in the rat results in changes in spontaneous motor activity at 2 weeks post-exposure. Toxicology Letters, 1992, 61, 265-274.	0.8	9

CRISTINA SUNOL

#	Article	IF	CITATIONS
55	Regional effects on the cerebral concentration of noradrenaline, serotonin and dopamine in suckling rats after a single dose of lindane. Toxicology, 1991, 69, 43-54.	4.2	14
56	Microcomputer adaptation of the wheel-shaped activity monitor: Effects of lindane. Pharmacology Biochemistry and Behavior, 1990, 35, 1003-1006.	2.9	3
57	Lindane inhibition of [35S]TBPS binding to the GABAA receptor in rat brain. Neurotoxicology and Teratology, 1990, 12, 607-610.	2.4	32
58	On the effects of lindane on the plus-maze model of anxiety. Neurotoxicology and Teratology, 1990, 12, 643-647.	2.4	20
59	GABAergic modulation of lindane (\hat{I}^3 -hexachlorocyclohexane)-induced seizures. Toxicology and Applied Pharmacology, 1989, 100, 1-8.	2.8	38
60	Convulsant effect of lindane and regional brain concentration of GABA and dopamine. Toxicology, 1988, 49, 247-252.	4.2	24
61	High-performance liquid chromatography-fluorescence detection method for endogenous .gammaaminobutyric acid validated by mass spectrometric and gas chromatographic techniques. Analytical Chemistry, 1988, 60, 649-651.	6.5	21
62	On the-metabolic origin of plasmatic indole-3-acetic acid in the rat. Biochemical Pharmacology, 1983, 32, 3251-3254.	4.4	8
63	Mass spectrometric determination of new prostaglandin derivatives (series A and E). Biological Mass Spectrometry, 1977, 4, 237-240.	0.5	16