
John-Demian Sauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>N</i> -Ethyl- <i>N</i> -Nitrosourea-Induced <i>Goldenticket</i> Mouse Mutant Reveals an Essential Function of <i>Sting</i> in the <i>In Vivo</i> Interferon Response to <i>Listeria monocytogenes</i> and Cyclic Dinucleotides. Infection and Immunity, 2011, 79, 688-694.	1.0	492
2	Listeria monocytogenes Triggers AIM2-Mediated Pyroptosis upon Infrequent Bacteriolysis in the Macrophage Cytosol. Cell Host and Microbe, 2010, 7, 412-419.	5.1	286
3	The Cyclic Dinucleotide c-di-AMP Is an Allosteric Regulator of Metabolic Enzyme Function. Cell, 2014, 158, 1389-1401.	13.5	174
4	An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E747-56.	3.3	171
5	Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection. MBio, 2013, 4, e00282-13.	1.8	166
6	Type I IFN Signaling Constrains IL-17A/F Secretion by γδT Cells during Bacterial Infections. Journal of Immunology, 2010, 184, 3755-3767.	0.4	134
7	Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13242-13247.	3.3	124
8	The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9924-9929.	3.3	118
9	<i>Listeria monocytogenes</i> engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12419-12424.	3.3	117
10	Differential Requirements for NAIP5 in Activation of the NLRC4 Inflammasome. Infection and Immunity, 2011, 79, 1606-1614.	1.0	115
11	Innate Immune Pathways Triggered by Listeria monocytogenes and Their Role in the Induction of Cell-Mediated Immunity. Advances in Immunology, 2012, 113, 135-156.	1.1	77
12	Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish. Cellular Microbiology, 2016, 18, 591-604.	1.1	72
13	Distinct inflammatory and wound healing responses to complex caudal fin injuries of larval zebrafish. ELife, 2019, 8, .	2.8	72
14	The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathogens, 2016, 12, e1006001.	2.1	60
15	Specificity of Legionella pneumophila and Coxiella burnetii Vacuoles and Versatility of Legionella pneumophila Revealed by Coinfection. Infection and Immunity, 2005, 73, 4494-4504.	1.0	55
16	Selective Pharmacologic Inhibition of a PASTA Kinase Increases Listeria monocytogenes Susceptibility to β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2014, 58, 4486-4494.	1.4	52
17	Do Shoot the Messenger: PASTA Kinases as Virulence Determinants and Antibiotic Targets. Trends in Microbiology, 2018, 26, 56-69.	3.5	47
18	Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam–Daptomycin Synergy. Antimicrobial Agents and Chemotherapy, 2016, 60, 451-458.	1.4	45

JOHN-DEMIAN SAUER

#	Article	IF	CITATIONS
19	The phagosomal nutrient transporter (Pht) family. Microbiology (United Kingdom), 2008, 154, 42-53.	0.7	37
20	<i>Listeria monocytogenes</i> cytosolic metabolism promotes replication, survival, and evasion of innate immunity. Cellular Microbiology, 2017, 19, e12762.	1.1	36
21	Metabolism of the Gram-Positive Bacterial Pathogen <i>Listeria monocytogenes</i> . Microbiology Spectrum, 2019, 7, .	1.2	33
22	A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA. Journal of Biological Chemistry, 2017, 292, 17037-17045.	1.6	32
23	A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival. MBio, 2017, 8, .	1.8	28
24	Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity. Pathogens, 2018, 7, 8.	1.2	27
25	GW779439X and Its Pyrazolopyridazine Derivatives Inhibit the Serine/Threonine Kinase Stk1 and Act As Antibiotic Adjuvants against β-Lactam-Resistant <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2018, 4, 1508-1518.	1.8	27
26	Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Current Topics in Microbiology and Immunology, 2016, 397, 133-160.	0.7	22
27	In Silico Screen and Structural Analysis Identifies Bacterial Kinase Inhibitors which Act with β-Lactams To Inhibit Mycobacterial Growth. Molecular Pharmaceutics, 2018, 15, 5410-5426.	2.3	22
28	PASTA kinase-dependent control of peptidoglycan synthesis via ReoM is required for cell wall stress responses, cytosolic survival, and virulence in Listeria monocytogenes. PLoS Pathogens, 2021, 17, e1009881.	2.1	22
29	Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infection and Immunity, 2017, 85, .	1.0	20
30	Carbomer-based adjuvant elicits CD8 T-cell immunity by inducing a distinct metabolic state in cross-presenting dendritic cells. PLoS Pathogens, 2021, 17, e1009168.	2.1	19
31	In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. ELife, 2022, 11, .	2.8	19
32	The <i>phtC-phtD</i> Locus Equips Legionella pneumophila for Thymidine Salvage and Replication in Macrophages. Infection and Immunity, 2014, 82, 720-730.	1.0	18
33	The Extracellular Domain of the β ₂ Integrin β Subunit (CD18) Is Sufficient for Escherichia coli Hemolysin and Aggregatibacter actinomycetemcomitans Leukotoxin Cytotoxic Activity. MBio, 2019, 10, .	1.8	18
34	Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection. PLoS ONE, 2017, 12, e0179574.	1.1	17
35	Role of respiratory <scp>NADH</scp> oxidation in the regulation of <i>Staphylococcus aureus</i> virulence. EMBO Reports, 2020, 21, e45832.	2.0	16
36	Listeria monocytogenes requires cellular respiration for NAD+ regeneration and pathogenesis. ELife, 2022, 11, .	2.8	16

JOHN-DEMIAN SAUER

#	Article	IF	CITATIONS
37	Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity. Journal of Immunology, 2018, 200, 3729-3738.	0.4	15
38	Listeria monocytogenes Menl Encodes a DHNA-CoA Thioesterase Necessary for Menaquinone Biosynthesis, Cytosolic Survival, and Virulence. Infection and Immunity, 2021, 89, .	1.0	15
39	Listeria monocytogenes Cancer Vaccines: Bridging Innate and Adaptive Immunity. Current Clinical Microbiology Reports, 2019, 6, 213-224.	1.8	14
40	Human Invariant NKT Cells Induce IL-1β Secretion by Peripheral Blood Monocytes via a P2X7-Independent Pathway. Journal of Immunology, 2016, 197, 2455-2464.	0.4	12
41	Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncolmmunology, 2018, 7, e1456603.	2.1	12
42	Mutation of the Transcriptional Regulator Ytol Rescues Listeria monocytogenes Mutants Deficient in the Essential Shared Metabolite 1,4-Dihydroxy-2-Naphthoate (DHNA). Infection and Immunity, 2019, 88, .	1.0	9
43	Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Frontiers in Microbiology, 2021, 12, 787726.	1.5	8
44	Inflammasome-Mediated Inhibition of Listeria monocytogenes-Stimulated Immunity Is Independent of Myelomonocytic Function. PLoS ONE, 2013, 8, e83191.	1.1	7
45	iNKT cells coordinate immune pathways to enable engraftment in nonconditioned hosts. Life Science Alliance, 2021, 4, e202000999.	1.3	4
46	Metabolism of the Gram-Positive Bacterial Pathogen <i>Listeria monocytogenes</i> ., 0, , 864-872.		3
47	Phagocytes produce prostaglandin E2 in response to cytosolic Listeria monocytogenes. PLoS Pathogens, 2021, 17, e1009493.	2.1	3
48	An immune response with a sweet tooth. Nature, 2018, 561, 37-38.	13.7	0
49	The Role of the Phagosomal Transporter (Pht) Family of Proteins in <i>Legionella pneumophila</i> Pathogenesis. , 0, , 288-291.		Ο