David O Prevatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2091313/publications.pdf

Version: 2024-02-01

66 papers

1,044 citations

16 h-index 30 g-index

68 all docs 68 docs citations

68 times ranked 536 citing authors

#	Article	IF	Citations
1	Impacts of Hurricane Dorian on the Bahamas: field observations of hazard intensity and performance of the built environment. Coastal Engineering Journal, 2022, 64, 3-23.	1.9	3
2	StEER: A Community-Centered Approach to Assessing the Performance of the Built Environment after Natural Hazard Events. Frontiers in Built Environment, 2021, 7, .	2.3	15
3	Automation and New Capabilities in the University of Florida NHERI Boundary Layer Wind Tunnel. Frontiers in Built Environment, 2020, 6, .	2.3	15
4	Wind Resistance and Fragility Functions for Wood-Framed Wall Sheathing Panels in Low-Rise Residential Construction. Journal of Structural Engineering, 2020, 146, 04020139.	3.4	2
5	Engineering-Based Tornado Damage Assessment: Numerical Tool for Assessing Tornado Vulnerability of Residential Structures. Frontiers in Built Environment, 2020, 6, .	2.3	5
6	Hurricane Michael in the Area of Mexico Beach, Florida. Journal of Waterway, Port, Coastal and Ocean Engineering, 2020, 146, .	1.2	21
7	Tornado-Induced and Straight-Line Wind Loads on a Low-Rise Building With Consideration of Internal Pressure. Frontiers in Built Environment, 2020, 6, .	2.3	15
8	Hurricanes Irma and Maria post-event survey in US Virgin Islands. Coastal Engineering Journal, 2019, 61, 121-134.	1.9	30
9	Epistemic Uncertainties in Fragility Functions Derived from Post-Disaster Damage Assessments. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2018, 4, 04018015.	1.7	10
10	Overview of Damage Observed in Regional Construction during the Passage of Hurricane Irma over the State of Florida. , 2018 , , .		12
11	Overview and Field Data., 2018,, 3-17.		0
12	Field reconnaissance and overview of the impact of Hurricane Matthew on Haiti's Tiburon Peninsula. Natural Hazards, 2018, 94, 627-653.	3.4	11
13	Linking Building Attributes and Tornado Vulnerability Using a Logistic Regression Model. Natural Hazards Review, 2018, 19, 04018017.	1.5	10
14	Empirical Approach to Evaluating the Tornado Fragility of Residential Structures. Journal of Structural Engineering, 2017, 143, .	3.4	32
15	Development of Empirically-Based Fragilities of Residential Damage in the 2011 Joplin, Missouri, Tornado. , 2016, , .		4
16	An Engineering-Based Approach to Predict Tornado-Induced Damage. , 2016, , 311-335.		13
17	A FIELD STUDY SETUP OF FOUR HOMES HAVING NON-VENTILATED AND SEMI-CONDITIONED SEALED ATTICS. Journal of Green Building, 2016, $11,1$ -20.	0.8	2
18	An estimate of tornado loads on a wood-frame building using database-assisted design methodology. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 138, 27-35.	3.9	14

#	Article	IF	CITATIONS
19	Comparison of two methods of near-surface wind speed estimation in the 22 May, 2011 Joplin, Missouri Tornado. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 138, 87-97.	3.9	39
20	A vulnerability assessment tool for residential structures and extreme wind events. , 2015, , .		1
21	Tornado Damage and Impacts on Nuclear Facilities in the United States. Journal of Wind Engineering, 2015, 40, 91-100.	0.2	4
22	Development of empirically-based fragilities of residential damage in the 2011 Joplin, Missouri tornado. , 2015, , .		0
23	Failure Progression Analysis of Observed Residential Structural Damage within a Tornado Wind Field. , 2014, , .		5
24	Wind Uplift Resistance of Artificially and Naturally Aged Asphalt Shingles. Journal of Architectural Engineering, 2014, 20, .	1.6	6
25	In Situ Nail Withdrawal Strengths in Wood Roof Structures. Journal of Structural Engineering, 2014, 140, .	3.4	5
26	Wind Uplift Capacity of Foam-Retrofitted Roof Sheathing Panels Subjected to Rainwater Intrusion. Journal of Architectural Engineering, 2014, 20, .	1.6	5
27	The influence of unsealing on the wind resistance of asphalt shingles. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130, 30-40.	3.9	11
28	A comparison of methods to estimate peak wind loads on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126, 11-23.	3.9	99
29	Using Tornado Damage Surveys to Improve Laboratory Tornado Simulations. , 2014, , .		2
30	Anchor Bolt Steel Strength in Annular Stand-Off Base Plate Connections. Transportation Research Record, 2014, 2406, 23-31.	1.9	3
31	Probabilistic modeling of wind pressure on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 114, 18-26.	3.9	90
32	Using instrumented small-scale models to study structural load paths in wood-framed buildings. Engineering Structures, 2013, 54, 47-56.	5.3	10
33	Dual-Objective-Based Tornado Design Philosophy. Journal of Structural Engineering, 2013, 139, 251-263.	3.4	59
34	Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes. Journal of Disaster Research, 2013, 8, 1061-1067.	0.7	35
35	Making the Case for Improved Structural Design: Tornado Outbreaks of 2011. Leadership and Management in Engineering, 2012, 12, 254-270.	0.3	59
36	Building Damage Observations and EF Classifications from the Tuscaloosa, AL, and Joplin, MO, Tornadoes., 2012,,.		17

#	Article	IF	Citations
37	GIS for the Geo-Referenced Analysis and Rapid Dissemination of Forensic Evidence Collected in the Aftermath of the Tuscaloosa Tornado. , 2012 , , .		10
38	In Situ Nail Withdrawal Strengths in Wood Residential Roofs. , 2012, , .		0
39	Probabilistic procedure for wood-frame roof sheathing panel debris impact to windows in hurricanes. Engineering Structures, 2012, 35, 178-187.	5.3	14
40	Investigation of the Wind Resistance of Asphalt Shingles. , 2012, , .		5
41	Dual Objective Design Philosophy for Tornado Engineering. , 2012, , .		1
42	Wind Uplift Capacity of Foam-Retrofitted Roof Sheathing Subjected to Water Leaks. , 2012, , .		0
43	Estimation of Peak Wind Pressure on a Low-Rise Building. , 2012, , .		2
44	The Florida Coastal Monitoring Program (FCMP): A review. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 979-995.	3.9	52
45	Database-assisted design methodology to predict wind-induced structural behavior of a light-framed wood building. Engineering Structures, 2011, 33, 674-684.	5.3	25
46	Modeling System Effects and Structural Load Paths in a Wood-Framed Structure. Journal of Architectural Engineering, 2011, 17, 134-143.	1.6	29
47	Wind-Uplift Capacity of Residential Wood Roof-Sheathing Panels Retrofitted with Insulating Foam Adhesive. Journal of Architectural Engineering, 2011, 17, 144-154.	1.6	36
48	Influence of Edge Restraint on Clip Fastener Loads of Standing Seam Metal Roof Panels. Journal of ASTM International, 2011, 8, 1-16.	0.2	1
49	Using a Portable Nail Extractor to Determine Roof Nail Withdrawal Capacity of Existing Residential Structures. , 2010, , .		0
50	Advancing Performance Based Design through Full-Scale Simulation of Wind, Water, and Structural Interaction. , 2010 , , .		0
51	Experimentally Determined Structural Load Paths in a 1/3-Scale Model of Light-Framed Wood, Rectangular Building. , 2010, , .		2
52	On the Job versus Graduate School Training of Forensic Engineers—An Instructor and Professional Engineer's View. Journal of Performance of Constructed Facilities, 2010, 24, 78-86.	2.0	11
53	Wind Tunnel Studies on Sawtooth and Monosloped Roofs. Journal of Structural Engineering, 2010, 136, 1161-1171.	3.4	8
54	Engineering Perspectives on Reducing Hurricane Damage to Housing in CARICOM Caribbean Islands. Natural Hazards Review, 2010, 11, 140-150.	1.5	27

#	Article	IF	CITATIONS
55	Twenty-Five Years of Caribbean Hurricane Disaster Mitigation. , 2010, , 153-161.		O
56	What Do We Learn from Wind Uplift Tests of Roof Systems?. , 2010, , .		6
57	3D Flow Characterization of Simulated Hurricane Wind Flow around a 1/3-Scale Light-Framed Wood Structure Using a 4-Hole Pressure Probe Sensor. , 2010, , .		O
58	Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling. Engineering Structures, 2009, 31, 2265-2274.	5.3	51
59	Statistical and analytical models for roof components in existing light-framed wood structures. Engineering Structures, 2009, 31, 2607-2616.	5.3	49
60	Wind Uplift Behavior of Mechanically Attached Single-Ply Roofing Systems: The Need for Correction Factors in Standardized Tests. Journal of Structural Engineering, 2008, 134, 489-498.	3.4	8
61	Probabilistic Descriptions of In-Situ Roof to Top Plate Connections in Light Frame Wood Structures. , 2008, , .		3
62	External Pressure Coefficients on Saw-Tooth and Mono-Sloped Roofs. , 2006, , 1.		1
63	Wind Loads on Single-Family Dwellings in Suburban Terrain: Comparing Field Data and Wind Tunnel Simulation., 2006,, 1.		2
64	Wind Load Design and Performance Testing of Exterior Walls: Current Standards and Future Considerations., 2003,, 17-41.		1
65	Improving the cyclone-resistance of traditional Caribbean house construction through rational structural design criteria. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 52, 305-319.	3.9	10
66	Influence of Edge Restraint on Clip Fastener Loads of Standing Seam Metal Roof Panels., 0,, 180-180-24.		0