Takehito Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209128/publications.pdf

Version: 2024-02-01

	567281	526287
755	15	27
citations	h-index	g-index
37	37	738
docs citations	times ranked	citing authors
	citations 37	755 15 citations h-index 37 37

#	Article	IF	CITATIONS
1	Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature, 2022, 602, 234-239.	27.8	41
2	The Observation of Local Electric Fields in GaN/AlGaN/InGaN Multi-heterostructures by Differential Phase Contrast STEM. IEEJ Transactions on Electronics, Information and Systems, 2022, 142, 367-372.	0.2	O
3	Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM. Ultramicroscopy, 2022, 238, 113538.	1.9	11
4	Linear imaging theory for differential phase contrast and other phase imaging modes in scanning transmission electron microscopy. Ultramicroscopy, 2022, , 113580.	1.9	3
5	Toward quantitative electromagnetic field imaging by differential-phase-contrast scanning transmission electron microscopy. Microscopy (Oxford, England), 2021, 70, 148-160.	1.5	17
6	Ultra-high contrast STEM imaging for segmented/pixelated detectors by maximizing the signal-to-noise ratio. Ultramicroscopy, 2021, 220, 113133.	1.9	15
7	Nanometre imaging of Fe ₃ GeTe ₂ ferromagnetic domain walls. Nanotechnology, 2021, 32, 205703.	2.6	6
8	Experimental Observation of Long-Range Magnetic Order in Icosahedral Quasicrystals. Journal of the American Chemical Society, 2021, 143, 19938-19944.	13.7	46
9	Oxygen-Induced Reversible Sn-Dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52929-52936.	8.0	6
10	Phase-Contrast-Based Structure Retrieval Methods in Atomic Resolution Scanning Transmission Electron Microscopy – When They Hold and When They Don't. Microscopy and Microanalysis, 2020, 26, 442-443.	0.4	1
11	Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy, 2020, 216, 113033.	1.9	15
12	Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM. Microscopy (Oxford, England), 2020, 69, 312-320.	1.5	20
13	Iterative Algorithm of Atomic Potential Reconstruction Based on DPC Signal from Thick Specimens. Microscopy and Microanalysis, 2019, 25, 60-61.	0.4	O
14	Redox-Inactive CO ₂ Determines Atmospheric Stability of Electrical Properties of ZnO Nanowire Devices through a Room-Temperature Surface Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40260-40266.	8.0	12
15	Light Element Imaging Technique at Low Dose Condition by Processing Simultaneously Obtained STEM Images Using a Segmented Detector. Microscopy and Microanalysis, 2019, 25, 484-485.	0.4	0
16	High contrast STEM imaging for light elements by an annular segmented detector. Ultramicroscopy, 2019, 202, 148-155.	1.9	14
17	Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor–Liquid–Solid Process. Nano Letters, 2019, 19, 1675-1681.	9.1	5
18	PM-03 New Magnetic Structure Imaging Techniques in Polycrystalline Materials by DPC STEM. Microscopy (Oxford, England), 2019, 68, i36-i36.	1.5	0

#	Article	IF	CITATIONS
19	Electric Field Imaging at Atomic Resolution by DPC STEM. Materia Japan, 2019, 58, 104-104.	0.1	o
20	Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. ACS Nano, 2018, 12, 2662-2668.	14.6	30
21	Elevenin regulates the body color through a G protein-coupled receptor NIA42 in the brown planthopper Nilaparvata lugens. General and Comparative Endocrinology, 2018, 258, 33-38.	1.8	31
22	Direct electric field imaging of graphene defects. Nature Communications, 2018, 9, 3878.	12.8	74
23	Integrated contrast-transfer-function for aberration-corrected phase-contrast STEM. Ultramicroscopy, 2018, 194, 193-198.	1.9	12
24	Theoretical framework of statistical noise in scanning transmission electron microscopy. Ultramicroscopy, 2018, 193, 118-125.	1.9	37
25	Probing the Internal Atomic Charge Density Distributions in Real Space. ACS Nano, 2018, 12, 8875-8881.	14.6	43
26	Numerical Procedures to determine Potential Distribution from Electronic Field Vectors observed in Differential Phase Contrast (DPC) imaging. Microscopy and Microanalysis, 2017, 23, 34-35.	0.4	9
27	Quantitative electric field mapping in thin specimens using a segmented detector: Revisiting the transfer function for differential phase contrast. Ultramicroscopy, 2017, 182, 258-263.	1.9	36
28	Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy. Accounts of Chemical Research, 2017, 50, 1502-1512.	15.6	72
29	True Vapor–Liquid–Solid Process Suppresses Unintentional Carrier Doping of Single Crystalline Metal Oxide Nanowires. Nano Letters, 2017, 17, 4698-4705.	9.1	20
30	Quantitative Relation Between Differential Phase Contrast Images Obtained by Segmented and Pixelated Detectors. Microscopy and Microanalysis, 2017, 23, 440-441.	0.4	0
31	Boundary-artifact-free determination of potential distribution from differential phase contrast signals. Journal of Electron Microscopy, 2017, 66, 397-405.	0.9	15
32	Electric field imaging of single atoms. Nature Communications, 2017, 8, 15631.	12.8	144
33	Quantitative Atomic Resolution Differential Phase Contrast Imaging Using a Segmented Area All Field Detector. Microscopy and Microanalysis, 2016, 22, 504-505.	0.4	1
34	B11-P-07Phase-contrast characteristics of annular bright-field imaging in STEM. Microscopy (Oxford,) Tj ETQq0 (0 0 [gBT /0	Overlock 10 Tf
35	Local cluster symmetry of a highly ordered quasicrystalline Al58Cu26lr16extracted through multivariate analysis of STEM images. Microscopy (Oxford, England), 2015, 64, 341-349.	1.5	17
36	Direct observations of local electronic states in an Al-based quasicrystal by STEM-EELS. Microscopy (Oxford, England), 2014, 63, i17.2-i18.	1.5	2