Takehito Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209128/publications.pdf Version: 2024-02-01

TAKEHITO SEKI

#	Article	IF	CITATIONS
1	Electric field imaging of single atoms. Nature Communications, 2017, 8, 15631.	12.8	144
2	Direct electric field imaging of graphene defects. Nature Communications, 2018, 9, 3878.	12.8	74
3	Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy. Accounts of Chemical Research, 2017, 50, 1502-1512.	15.6	72
4	Experimental Observation of Long-Range Magnetic Order in Icosahedral Quasicrystals. Journal of the American Chemical Society, 2021, 143, 19938-19944.	13.7	46
5	Probing the Internal Atomic Charge Density Distributions in Real Space. ACS Nano, 2018, 12, 8875-8881.	14.6	43
6	Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature, 2022, 602, 234-239.	27.8	41
7	Theoretical framework of statistical noise in scanning transmission electron microscopy. Ultramicroscopy, 2018, 193, 118-125.	1.9	37
8	Quantitative electric field mapping in thin specimens using a segmented detector: Revisiting the transfer function for differential phase contrast. Ultramicroscopy, 2017, 182, 258-263.	1.9	36
9	Elevenin regulates the body color through a G protein-coupled receptor NIA42 in the brown planthopper Nilaparvata lugens. General and Comparative Endocrinology, 2018, 258, 33-38.	1.8	31
10	Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries. ACS Nano, 2018, 12, 2662-2668.	14.6	30
11	True Vapor–Liquid–Solid Process Suppresses Unintentional Carrier Doping of Single Crystalline Metal Oxide Nanowires. Nano Letters, 2017, 17, 4698-4705.	9.1	20
12	Magnetic-structure imaging in polycrystalline materials by specimen-tilt series averaged DPC STEM. Microscopy (Oxford, England), 2020, 69, 312-320.	1.5	20
13	Local cluster symmetry of a highly ordered quasicrystalline Al58Cu26Ir16extracted through multivariate analysis of STEM images. Microscopy (Oxford, England), 2015, 64, 341-349.	1.5	17
14	Toward quantitative electromagnetic field imaging by differential-phase-contrast scanning transmission electron microscopy. Microscopy (Oxford, England), 2021, 70, 148-160.	1.5	17
15	Boundary-artifact-free determination of potential distribution from differential phase contrast signals. Journal of Electron Microscopy, 2017, 66, 397-405.	0.9	15
16	Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy, 2020, 216, 113033.	1.9	15
17	Ultra-high contrast STEM imaging for segmented/pixelated detectors by maximizing the signal-to-noise ratio. Ultramicroscopy, 2021, 220, 113133.	1.9	15
18	High contrast STEM imaging for light elements by an annular segmented detector. Ultramicroscopy, 2019, 202, 148-155.	1.9	14

Τακεμιτό Seki

#	Article	IF	CITATIONS
19	Integrated contrast-transfer-function for aberration-corrected phase-contrast STEM. Ultramicroscopy, 2018, 194, 193-198.	1.9	12
20	Redox-Inactive CO ₂ Determines Atmospheric Stability of Electrical Properties of ZnO Nanowire Devices through a Room-Temperature Surface Reaction. ACS Applied Materials & Interfaces, 2019, 11, 40260-40266.	8.0	12
21	Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM. Ultramicroscopy, 2022, 238, 113538.	1.9	11
22	Numerical Procedures to determine Potential Distribution from Electronic Field Vectors observed in Differential Phase Contrast (DPC) imaging. Microscopy and Microanalysis, 2017, 23, 34-35.	0.4	9
23	Oxygen-Induced Reversible Sn-Dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching. ACS Applied Materials & Interfaces, 2020, 12, 52929-52936.	8.0	6
24	Nanometre imaging of Fe ₃ GeTe ₂ ferromagnetic domain walls. Nanotechnology, 2021, 32, 205703.	2.6	6
25	Unusual Oxygen Partial Pressure Dependence of Electrical Transport of Single-Crystalline Metal Oxide Nanowires Grown by the Vapor–Liquid–Solid Process. Nano Letters, 2019, 19, 1675-1681.	9.1	5
26	Linear imaging theory for differential phase contrast and other phase imaging modes in scanning transmission electron microscopy. Ultramicroscopy, 2022, , 113580.	1.9	3
27	Direct observations of local electronic states in an Al-based quasicrystal by STEM-EELS. Microscopy (Oxford, England), 2014, 63, i17.2-i18.	1.5	2
28	Quantitative Atomic Resolution Differential Phase Contrast Imaging Using a Segmented Area All Field Detector. Microscopy and Microanalysis, 2016, 22, 504-505.	0.4	1
29	Phase-Contrast-Based Structure Retrieval Methods in Atomic Resolution Scanning Transmission Electron Microscopy – When They Hold and When They Don't. Microscopy and Microanalysis, 2020, 26, 442-443.	0.4	1
30	B11-P-07Phase-contrast characteristics of annular bright-field imaging in STEM. Microscopy (Oxford,) Tj ETQq0 C	0 ₁ gBT /C	Overlock 10 T
31	Quantitative Relation Between Differential Phase Contrast Images Obtained by Segmented and Pixelated Detectors. Microscopy and Microanalysis, 2017, 23, 440-441.	0.4	0
32	Iterative Algorithm of Atomic Potential Reconstruction Based on DPC Signal from Thick Specimens. Microscopy and Microanalysis, 2019, 25, 60-61.	0.4	0
33	Light Element Imaging Technique at Low Dose Condition by Processing Simultaneously Obtained STEM Images Using a Segmented Detector. Microscopy and Microanalysis, 2019, 25, 484-485.	0.4	0
34	PM-03 New Magnetic Structure Imaging Techniques in Polycrystalline Materials by DPC STEM. Microscopy (Oxford, England), 2019, 68, i36-i36.	1.5	0
35	Electric Field Imaging at Atomic Resolution by DPC STEM. Materia Japan, 2019, 58, 104-104.	0.1	0
0.6	The Observation of Local Electric Fields in GaN/AlGaN/InGaN Multi-heterostructures by Differential		

97	The Observation of Local Liectife fields in Oan/Aldan/indan Multi fielefost actures by Differential	0.0	0
30	Dhase Contrast STEM JEEL Transactions on Electronics Information and Systems 2022 142 367 372	0.2	0
	rhase contrast stellin. IEE transactions on Electronics, information and Systems, 2022, 142, 507-572.		