
Jo De Vrieze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2091279/publications.pdf Version: 2024-02-01

IO DE VRIEZE

#	Article	IF	CITATIONS
1	Molybdate effectively controls sulphide production in a shrimp pond model. Environmental Research, 2022, 203, 111797.	3.7	4
2	Labile carbon feedstocks trigger a priming effect in anaerobic digestion: An insight into microbial mechanisms. Bioresource Technology, 2022, 344, 126243.	4.8	5
3	Preâ€incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnology and Bioengineering, 2022, 119, 1792-1807.	1.7	2
4	Engineering microbial technologies for environmental sustainability: choices to make. Microbial Biotechnology, 2022, 15, 215-227.	2.0	24
5	Assessing the potential for upâ€cycling recovered resources from anaerobic digestion through microbial protein production. Microbial Biotechnology, 2021, 14, 897-910.	2.0	20
6	In vitro and in vivo digestion of red cured cooked meat: oxidation, intestinal microbiota and fecal metabolites. Food Research International, 2021, 142, 110203.	2.9	16
7	Cow manure stabilizes anaerobic digestion of cocoa waste. Waste Management, 2021, 126, 508-516.	3.7	14
8	From Biogas and Hydrogen to Microbial Protein Through Co-Cultivation of Methane and Hydrogen Oxidizing Bacteria. Frontiers in Bioengineering and Biotechnology, 2021, 9, 733753.	2.0	17
9	Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles. Water Research, 2021, 202, 117422.	5.3	12
10	Gut Microbiota of Migrating Wild Rabbit Fish (Siganus guttatus) Larvae Have Low Spatial and Temporal Variability. Microbial Ecology, 2020, 79, 539-551.	1.4	25
11	The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy. New Biotechnology, 2020, 55, 12-18.	2.4	46
12	Red and processed meat consumption within two different dietary patterns: Effect on the colon microbial community and volatile metabolites in pigs. Food Research International, 2020, 129, 108793.	2.9	7
13	Microbial protein production from methane via electrochemical biogas upgrading. Chemical Engineering Journal, 2020, 391, 123625.	6.6	31
14	Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research, 2020, 16, 392.	0.7	14
15	The next frontier of the anaerobic digestion microbiome: From ecology to process control. Environmental Science and Ecotechnology, 2020, 3, 100032.	6.7	26
16	Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. Sustainable Energy and Fuels, 2020, 4, 3712-3725.	2.5	35
17	Feedstock thermal pretreatment selectively steers process stability during the anaerobic digestion of waste activated sludge. Applied Microbiology and Biotechnology, 2020, 104, 3675-3686.	1.7	5
18	Nitrate amendment to control sulphide accumulation in shrimp ponds. Aquaculture, 2020, 521, 735010.	1.7	9

JO DE VRIEZE

#	Article	IF	CITATIONS
19	Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microbial Biotechnology, 2020, 13, 829-843.	2.0	26
20	Anaerobic Digestion as Key Technology inÂthe Bio-based Economy. , 2019, , 361-378.		0
21	High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. Bioresource Technology, 2019, 291, 121833.	4.8	35
22	Exploiting the unwanted: Sulphate reduction enables phosphate recovery from energy-rich sludge during anaerobic digestion. Water Research, 2019, 163, 114859.	5.3	28
23	Urine nitrification with a synthetic microbial community. Systematic and Applied Microbiology, 2019, 42, 126021.	1.2	12
24	Combined Consumption of Beefâ€Based Cooked Mince and Sucrose Stimulates Oxidative Stress, Cardiac Hypertrophy, and Colonic Outgrowth of Desulfovibrionaceae in Rats. Molecular Nutrition and Food Research, 2019, 63, e1800962.	1.5	25
25	Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 2019, 272, 582-593.	4.8	52
26	Anaerobic ureolysis of source-separated urine for NH3 recovery enables direct removal of divalent ions at the toilet. Water Research, 2019, 148, 97-105.	5.3	21
27	Membrane electrolysis-assisted CO2 and H2S extraction as innovative pretreatment method for biological biogas upgrading. Chemical Engineering Journal, 2019, 361, 1479-1486.	6.6	21
28	lsotope Fractionation in Biogas Allows Direct Microbial Community Stability Monitoring in Anaerobic Digestion. Environmental Science & Technology, 2018, 52, 6704-6713.	4.6	19
29	In situammonia removal by methanogenic granular biomass. Environmental Science: Water Research and Technology, 2018, 4, 559-568.	1.2	1
30	Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. Bioresource Technology, 2018, 263, 128-135.	4.8	58
31	Anaerobic Digestion as Key Technology inÂthe Bio-Based Economy. , 2018, , 1-19.		2
32	Microbial community dynamics reflect reactor stability during the anaerobic digestion of a very high strength and sulfateâ€rich vinasse. Journal of Chemical Technology and Biotechnology, 2018, 93, 975-984.	1.6	13
33	Anaerobic treatment of raw domestic wastewater in a UASB-digester at 10â€ ⁻ °C and microbial community dynamics. Chemical Engineering Journal, 2018, 334, 2088-2097.	6.6	67
34	Terminal restriction fragment length polymorphism is an "old school―reliable technique for swift microbial community screening in anaerobic digestion. Scientific Reports, 2018, 8, 16818.	1.6	48
35	Interfacing anaerobic digestion with (bio)electrochemical systems: Potentials and challenges. Water Research, 2018, 146, 244-255.	5.3	108
36	Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of the Total Environment, 2018, 644, 1525-1530.	3.9	39

JO DE VRIEZE

#	Article	IF	CITATIONS
37	Taking the technical microbiome into the next decade. Environmental Microbiology, 2018, 20, 1991-2000.	1.8	16
38	The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 2018, 6, 63.	4.9	138
39	Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. Bioresource Technology, 2018, 265, 568-572.	4.8	28
40	Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Research, 2017, 111, 109-117.	5.3	111
41	Microbial technology with major potentials for the urgent environmental needs of the next decades. Microbial Biotechnology, 2017, 10, 988-994.	2.0	13
42	Electrochemical Ammonia Recovery from Source-Separated Urine for Microbial Protein Production. Environmental Science & Technology, 2017, 51, 13143-13150.	4.6	89
43	The microbiome as engineering tool: Manufacturing and trading between microorganisms. New Biotechnology, 2017, 39, 206-214.	2.4	17
44	Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process. Water Research, 2017, 123, 134-143.	5.3	95
45	Absolute quantification of microbial taxon abundances. ISME Journal, 2017, 11, 584-587.	4.4	273
46	Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels, 2016, 9, 155.	6.2	80
47	Presence does not imply activity: DNA and RNA patterns differ in response to salt perturbation in anaerobic digestion. Biotechnology for Biofuels, 2016, 9, 244.	6.2	81
48	Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Applied Microbiology and Biotechnology, 2016, 100, 5177-5187.	1.7	30
49	High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Research, 2016, 98, 293-301.	5.3	57
50	The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Research, 2016, 104, 101-110.	5.3	61
51	Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology, 2016, 218, 1237-1245.	4.8	86
52	Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity. Environmental Microbiology, 2016, 18, 2797-2809.	1.8	99
53	Detection of acidification limit in anaerobic membrane bioreactors at ambient temperature. Water Research, 2016, 106, 429-438.	5.3	3
54	Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion. Bioresource Technology, 2016, 216, 150-158.	4.8	60

JO DE VRIEZE

#	Article	IF	CITATIONS
55	Temperature affects microbial abundance, activity and interactions in anaerobic digestion. Bioresource Technology, 2016, 209, 228-236.	4.8	84
56	Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. Journal of Environmental Management, 2015, 152, 75-82.	3.8	31
57	Electrochemical Nutrient Recovery Enables Ammonia Toxicity Control and Biogas Desulfurization in Anaerobic Digestion. Environmental Science & amp; Technology, 2015, 49, 948-955.	4.6	72
58	Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research, 2015, 75, 312-323.	5.3	276
59	Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures. Bioresource Technology, 2015, 189, 370-378.	4.8	19
60	Inoculum selection influences the biochemical methane potential of agroâ€industrial substrates. Microbial Biotechnology, 2015, 8, 776-786.	2.0	81
61	Anaerobic Digestion: About Beauty and Consolation. , 2015, , 3-12.		1
62	Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Applied Microbiology and Biotechnology, 2015, 99, 189-199.	1.7	125
63	<i>Methanosaeta</i> dominate acetoclastic methanogenesis during highâ€rate methane production in anaerobic reactors treating distillery wastewaters. Journal of Chemical Technology and Biotechnology, 2014, 89, 1751-1759.	1.6	30
64	Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Applied Microbiology and Biotechnology, 2014, 98, 3205-3217.	1.7	108
65	Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons. Applied Microbiology and Biotechnology, 2014, 98, 2255-2266.	1.7	11
66	Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor. Biomass and Bioenergy, 2014, 68, 95-105.	2.9	40
67	Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Research, 2014, 54, 211-221.	5.3	133
68	Repeated pulse feeding induces functional stability in anaerobic digestion. Microbial Biotechnology, 2013, 6, 414-424.	2.0	98
69	High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Research, 2013, 47, 3732-3741.	5.3	88
70	Hygienization of sludge through anaerobic digestion at 35, 55 and 60 ŰC. Water Science and Technology, 2013, 68, 2234-2239.	1.2	20
71	Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresource Technology, 2012, 112, 1-9.	4.8	661
72	Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 2012, 93, 859-869.	1.7	56