Angelia Nedich

List of Publications by Citations

Source: https://exaly.com/author-pdf/2091149/angelia-nedich-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 161
 8,605
 37
 91

 papers
 citations
 h-index
 g-index

 186
 10,895
 3.8
 6.99

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
161	Distributed Subgradient Methods for Multi-Agent Optimization. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 48-61	5.9	1679
160	Constrained Consensus and Optimization in Multi-Agent Networks. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 922-938	5.9	1057
159	Distributed Optimization Over Time-Varying Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 601-615	5.9	470
158	Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization. <i>Journal of Optimization Theory and Applications</i> , 2010 , 147, 516-545	1.6	378
157	Incremental Subgradient Methods for Nondifferentiable Optimization. <i>SIAM Journal on Optimization</i> , 2001 , 12, 109-138	2	367
156	On Distributed Averaging Algorithms and Quantization Effects. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 2506-2517	5.9	316
155	Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs. <i>SIAM Journal on Optimization</i> , 2017 , 27, 2597-2633	2	308
154	Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1524-1538	5.9	221
153	Distributed Asynchronous Constrained Stochastic Optimization. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2011 , 5, 772-790	7.5	203
152	Subgradient Methods for Saddle-Point Problems. <i>Journal of Optimization Theory and Applications</i> , 2009 , 142, 205-228	1.6	196
151	Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods. <i>SIAM Journal on Optimization</i> , 2009 , 19, 1757-1780	2	189
150	Asynchronous Broadcast-Based Convex Optimization Over a Network. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 1337-1351	5.9	166
149	Incremental Stochastic Subgradient Algorithms for Convex Optimization. <i>SIAM Journal on Optimization</i> , 2009 , 20, 691-717	2	147
148	Distributed Algorithms for Aggregative Games on Graphs. <i>Operations Research</i> , 2016 , 64, 680-704	2.3	130
147	Distributed Random Projection Algorithm for Convex Optimization. <i>IEEE Journal on Selected Topics in Signal Processing</i> , 2013 , 7, 221-229	7.5	111
146	. IEEE Transactions on Automatic Control, 2016 , 61, 3936-3947	5.9	108
145	. Proceedings of the IEEE, 2018 , 106, 953-976	14.3	106

(2021-2014)

144	An \$O(1/k)\$ Gradient Method for Network Resource Allocation Problems. <i>IEEE Transactions on Control of Network Systems</i> , 2014 , 1, 64-73	4	106
143	Convergence rate for consensus with delays. <i>Journal of Global Optimization</i> , 2010 , 47, 437-456	1.5	100
142	Multiuser Optimization: Distributed Algorithms and Error Analysis. <i>SIAM Journal on Optimization</i> , 2011 , 21, 1046-1081	2	90
141	Least Squares Policy Evaluation Algorithms with Linear Function Approximation. <i>Discrete Event Dynamic Systems: Theory and Applications</i> , 2003 , 13, 79-110	1	81
140	Regularized Iterative Stochastic Approximation Methods for Stochastic Variational Inequality Problems. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 594-609	5.9	74
139	On Ergodicity, Infinite Flow, and Consensus in Random Models. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 1593-1605	5.9	74
138	Fast Convergence Rates for Distributed Non-Bayesian Learning. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5538-5553	5.9	66
137	Distributed subgradient methods and quantization effects 2008,		65
136	On stochastic gradient and subgradient methods with adaptive steplength sequences. <i>Automatica</i> , 2012 , 48, 56-67	5.7	62
135	Distributed Optimization for Control. <i>Annual Review of Control, Robotics, and Autonomous Systems</i> , 2018 , 1, 77-103	11.8	58
134	Product of Random Stochastic Matrices. IEEE Transactions on Automatic Control, 2014, 59, 437-448	5.9	56
133	Random algorithms for convex minimization problems. <i>Mathematical Programming</i> , 2011 , 129, 225-253	2.1	53
132	. IEEE Transactions on Control of Network Systems, 2018 , 5, 1322-1334	4	51
131	A Push-Pull Gradient Method for Distributed Optimization in Networks 2018 ,		49
130	Distributed and Recursive Parameter Estimation in Parametrized Linear State-Space Models. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 488-492	5.9	48
129	On Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging. <i>SIAM Journal on Optimization</i> , 2014 , 24, 84-107	2	42
128	Geometrically convergent distributed optimization with uncoordinated step-sizes 2017,		41
127	Push P ull Gradient Methods for Distributed Optimization in Networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 1-16	5.9	40

126	On Convergence Rate of Weighted-Averaging Dynamics for Consensus Problems. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 766-781	5.9	39
125	A gossip algorithm for aggregative games on graphs 2012 ,		38
124	Asynchronous Gossip-Based Random Projection Algorithms Over Networks. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 953-968	5.9	36
123	Convergence Rate of Distributed Averaging Dynamics and Optimization in Networks. <i>Foundations and Trends in Systems and Control</i> , 2015 , 2, 1-100	4	36
122	Cooperative distributed multi-agent optimization340-386		36
121	. IEEE Transactions on Automatic Control, 2019 , 64, 4891-4906	5.9	34
120	The effect of deterministic noise in subgradient methods. <i>Mathematical Programming</i> , 2010 , 125, 75-99	2.1	34
119	On backward product of stochastic matrices. <i>Automatica</i> , 2012 , 48, 1477-1488	5.7	31
118	On the rate of convergence of distributed subgradient methods for multi-agent optimization 2007,		29
117	Stochastic Dual Averaging for Decentralized Online Optimization on Time-Varying Communication Graphs. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 6407-6414	5.9	27
116	Distributed optimization over time-varying directed graphs 2013,		26
115	On Approximations and Ergodicity Classes in Random Chains. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 2718-2730	5.9	26
114	Exponential convergence of a distributed algorithm for solving linear algebraic equations. <i>Automatica</i> , 2017 , 83, 37-46	5.7	26
113	On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. <i>Mathematical Programming</i> , 2017 , 165, 391-431	2.1	25
112	Self-Tuned Stochastic Approximation Schemes for Non-Lipschitzian Stochastic Multi-User Optimization and Nash Games. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1753-1766	5.9	24
111	On distributed averaging algorithms and quantization effects 2008,		23
110	2008,		23
109	Internal stability of linear consensus processes 2014 ,		22

108	Distributed stochastic gradient tracking methods. <i>Mathematical Programming</i> , 2021 , 187, 409-457	2.1	22
107	A Distributed Stochastic Gradient Tracking Method 2018,		22
106	Dynamic Coalitional TU Games: Distributed Bargaining Among PlayersSNeighbors. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1363-1376	5.9	21
105	Distributed Generalized Nash Equilibrium Seeking in Aggregative Games on Time-Varying Networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 2061-2075	5.9	21
104	Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization. <i>IEEE Signal Processing Magazine</i> , 2020 , 37, 92-101	9.4	20
103	Asynchronous Gossip Algorithm for Stochastic Optimization: Constant Stepsize Analysis* 2010 , 51-60		20
102	Asynchronous Multiagent Primal-Dual Optimization. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 4421-4435	5.9	19
101	On Projected Stochastic Gradient Descent Algorithm with Weighted Averaging for Least Squares Regression. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5974-5981	5.9	18
100	Distributed Learning Algorithms for Spectrum Sharing in Spatial Random Access Wireless Networks. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 2854-2869	5.9	18
99	A geometric framework for nonconvex optimization duality using augmented lagrangian functions. <i>Journal of Global Optimization</i> , 2008 , 40, 545-573	1.5	18
98	A dual approach for optimal algorithms in distributed optimization over networks. <i>Optimization Methods and Software</i> , 2021 , 36, 171-210	1.3	18
97	Distributed Computation of Wasserstein Barycenters Over Networks 2018,		18
96	Nonasymptotic convergence rates for cooperative learning over time-varying directed graphs 2015,		17
95	A regularized smoothing stochastic approximation (RSSA) algorithm for stochastic variational inequality problems 2013 ,		16
94	Subgradient methods in network resource allocation: Rate analysis 2008,		16
93	Multi-competitive viruses over static and time-varying networks 2017,		15
92	Coordinate Dual Averaging for Decentralized Online Optimization With Nonseparable Global Objectives. <i>IEEE Transactions on Control of Network Systems</i> , 2018 , 5, 34-44	4	14
91	2018,		14

90	When infinite flow is sufficient for ergodicity 2010,	13
89	On existence of a quadratic comparison function for random weighted averaging dynamics and its implications 2011 ,	13
88	On the analysis of a continuous-time bi-virus model 2016 ,	13
87	Accelerated Gradient Play Algorithm for Distributed Nash Equilibrium Seeking 2018,	13
86	On Stochastic Mirror-prox Algorithms for Stochastic Cartesian Variational Inequalities: Randomized Block Coordinate and Optimal Averaging Schemes. <i>Set-Valued and Variational Analysis</i> , 2018 , 26, 789-819	12
85	Stability analysis and control of virus spread over time-varying networks 2015 ,	12
84	Distributed constrained optimization over noisy networks 2010 ,	12
83	Rate of Convergence for Consensus with Delays 2008,	12
82	Distributed Bregman-Distance Algorithms for Min-Max Optimization. <i>Studies in Computational Intelligence</i> , 2013 , 143-174	11
81	Optimal robust smoothing extragradient algorithms for stochastic variational inequality problems 2014 ,	11
80	Termination time of multidimensional Hegselmann-Krause opinion dynamics 2013,	11
79	Single timescale regularized stochastic approximation schemes for monotone Nash games under uncertainty 2010 ,	11
78	A Dual Approach for Optimal Algorithms in Distributed Optimization over Networks 2020,	10
77	A continuous-time distributed algorithm for solving linear equations 2016 ,	9
76	On a continuous-time multi-group bi-virus model with human awareness 2017,	9
75	Distributed min-max optimization in networks 2011 ,	9
74	Graph-Theoretic Analysis of Belief System Dynamics under Logic Constraints. <i>Scientific Reports</i> , 4·9	8
73	Cloud-based centralized/decentralized multi-agent optimization with communication delays 2015 ,	8

(2008-2013)

72	Hybrid Noncoherent Network Coding. IEEE Transactions on Information Theory, 2013, 59, 3317-3331	2.8	8
71	Multi-Layer Decomposition of Network Utility Maximization Problems. <i>IEEE/ACM Transactions on Networking</i> , 2020 , 28, 2077-2091	3.8	8
70	Adaptive Sequential Stochastic Optimization. IEEE Transactions on Automatic Control, 2019, 64, 496-509	5.9	8
69	Influence of Conformist and Manipulative Behaviors on Public Opinion. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 202-214	4	8
68	Complex constrained consensus 2014 ,		7
67	Stability of a distributed algorithm for solving linear algebraic equations 2014,		7
66	Alternative characterization of ergodicity for doubly stochastic chains 2011,		7
65	A General Framework for Decentralized Optimization With First-Order Methods		7
64	Optimal Distributed Convex Optimization on Slowly Time-Varying Graphs. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 829-841	4	7
63	Decentralized online optimization with global objectives and local communication 2015,		6
62	2016,		6
61	Multi-competitive viruses over time-varying networks with mutations and human awareness. <i>Automatica</i> , 2021 , 123, 109330	5.7	6
60	A Case of Distributed Optimization in Adversarial Environment 2019,		5
59	Random Block-Coordinate Gradient Projection Algorithms 2014 ,		5
58	Distributed learning algorithms for spectrum sharing in spatial random access networks 2015,		5
57	A distributed adaptive steplength stochastic approximation method for monotone stochastic Nash Games 2013 ,		5
56	DrSVM: Distributed random projection algorithms for SVMs 2012 ,		5
55	Separation of Nonconvex Sets with General Augmenting Functions. <i>Mathematics of Operations Research</i> , 2008 , 33, 587-605	1.5	5

54	Geometric Convergence of Gradient Play Algorithms for Distributed Nash Equilibrium Seeking. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 5342-5353	5.9	5
53	Decentralized Consensus Optimization and Resource Allocation. <i>Lecture Notes in Mathematics</i> , 2018 , 247-287	0.4	5
52	SUCAG: Stochastic Unbiased Curvature-aided Gradient Method for Distributed Optimization 2018,		5
51	Random Minibatch Subgradient Algorithms for Convex Problems with Functional Constraints. <i>Applied Mathematics and Optimization</i> , 2019 , 80, 801-833	1.5	4
50	Distributed optimization of strongly convex functions on directed time-varying graphs 2013,		4
49	Curvature-aided incremental aggregated gradient method 2017,		4
48	Distributed sparse regression by consensus-based primal-dual perturbation optimization 2013,		4
47	Distributed Gaussian learning over time-varying directed graphs 2016,		4
46	Stochastic quasi-Newton methods for non-strongly convex problems: Convergence and rate analysis 2016 ,		4
45	Distributed Optimization Over Networks. <i>Lecture Notes in Mathematics</i> , 2018 , 1-84	0.4	4
45 44	Distributed Optimization Over Networks. <i>Lecture Notes in Mathematics</i> , 2018 , 1-84 Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380	0.4	3
	Accelerating incremental gradient optimization with curvature information. Computational	<u> </u>	
44	Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380 A distributed algorithm for computing a common fixed point of a family of strongly	<u> </u>	3
44	Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380 A distributed algorithm for computing a common fixed point of a family of strongly quasi-nonexpansive maps 2017 , Evolution of Public Opinion under Conformist and Manipulative Behaviors. <i>IFAC-PapersOnLine</i> ,	1.4	3
44 43 42	Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380 A distributed algorithm for computing a common fixed point of a family of strongly quasi-nonexpansive maps 2017 , Evolution of Public Opinion under Conformist and Manipulative Behaviors. <i>IFAC-PapersOnLine</i> , 2017 , 50, 14344-14349	1.4	3 3 3
44 43 42 41	Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380 A distributed algorithm for computing a common fixed point of a family of strongly quasi-nonexpansive maps 2017 , Evolution of Public Opinion under Conformist and Manipulative Behaviors. <i>IFAC-PapersOnLine</i> , 2017 , 50, 14344-14349 A Lyapunov approach to discrete-time linear consensus 2014 ,	1.4	3 3 3
44 43 42 41 40	Accelerating incremental gradient optimization with curvature information. <i>Computational Optimization and Applications</i> , 2020 , 76, 347-380 A distributed algorithm for computing a common fixed point of a family of strongly quasi-nonexpansive maps 2017 , Evolution of Public Opinion under Conformist and Manipulative Behaviors. <i>IFAC-PapersOnLine</i> , 2017 , 50, 14344-14349 A Lyapunov approach to discrete-time linear consensus 2014 , Distributed multiuser optimization: Algorithms and error analysis 2009 , Non-asymptotic Concentration Rates in Cooperative Learning Part I: Variational Non-Bayesian	0.7	3 3 3 3

36	Discrete-Time Polar Opinion Dynamics with Heterogeneous Individuals 2018,		3
35	Multi-layer Decomposition of Optimal Resource Sharing Problems 2018,		3
34	2016,		2
33	Dynamic stochastic optimization 2014 ,		2
32	Single timescale stochastic approximation for stochastic Nash games in cognitive radio systems 2011 ,		2
31	2011,		2
30	Constrained consensus for bargaining in dynamic coalitional TU games 2011,		2
29	A tutorial on distributed (non-Bayesian) learning: Problem, algorithms and results 2016,		2
28	Input-output stability of linear consensus processes 2016,		2
27	On projected stochastic gradient descent algorithm with weighted averaging for least squares regression 2016 ,		2
26	On Stochastic and Deterministic Quasi-Newton Methods for Nonstrongly Convex Optimization: Asymptotic Convergence and Rate Analysis. <i>SIAM Journal on Optimization</i> , 2020 , 30, 1144-1172	2	2
25	2018,		2
24	Online Discrete Optimization in Social Networks in the Presence of Knightian Uncertainty. <i>Operations Research</i> , 2016 , 64, 662-679	2.3	1
23	LP-relaxation based distributed algorithms for scheduling in wireless networks 2014,		1
22	On stochastic proximal-point method for convex-composite optimization 2017,		1
21	2017,		1
20	A fully distributed dual gradient method with linear convergence for large-scale separable convex problems 2015 ,		1
19	On averaging dynamics in general state spaces 2012 ,		1

18	Distributed mini-batch random projection algorithms for reduced communication overhead 2013,		1
17	A general framework for distributed vote aggregation 2013,		1
16	Approximation and limiting behavior of random models 2010,		1
15	Convergence properties of normalized random incremental gradient algorithms for least-squares source localization 2012 ,		1
14	Farsighted sensor management for feature-aided tracking 2006 , 6235, 130		1
13	Non-asymptotic Concentration Rates in Cooperative Learning Part II: Inference on Compact Hypothesis Sets. <i>IEEE Transactions on Control of Network Systems</i> , 2022 , 1-1	4	1
12	Geometric convergence of distributed gradient play in games with unconstrained action sets. <i>IFAC-PapersOnLine</i> , 2020 , 53, 3367-3372	0.7	1
11	Complexity Certifications of First-Order Inexact Lagrangian Methods for General Convex Programming: Application to Real-Time MPC. <i>Lecture Notes in Control and Information Sciences</i> , 2015 , 3-26	0.5	1
10	Generalization of accelerated successive projection method for convex sets intersection problems 2016 ,		1
9	Distributed generalized Nash equilibrium seeking in aggregative games under partial-decision information via dynamic tracking 2019 ,		1
8	Data Clustering and Graph Partitioning via Simulated Mixing. <i>IEEE Transactions on Network Science and Engineering</i> , 2019 , 6, 253-266	4.9	1
7	. IEEE Transactions on Robotics, 2021 , 1-21	6.5	1
6	Multi-agent Optimization. Lecture Notes in Mathematics, 2018,	0.4	1
5	A Distributed Augmented Lagrangian Method Over Stochastic Networks for Economic Dispatch of Large-Scale Energy Systems. <i>IEEE Transactions on Sustainable Energy</i> , 2021 , 12, 1927-1934	8.2	1
4	Group Testing Game. IFAC-PapersOnLine, 2017, 50, 9668-9673	0.7	0
3	Distributed Augmented Lagrangian Method for Link-Based Resource Sharing Problems of Multi-Agent Systems. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	O
2	Minibatch stochastic subgradient-based projection algorithms for feasibility problems with convex inequalities. <i>Computational Optimization and Applications</i> , 2021 , 80, 121-152	1.4	
1	A Smooth Inexact Penalty Reformulation of Convex Problems with Linear Constraints. <i>SIAM Journal on Optimization</i> , 2021 , 31, 2141-2170	2	