Edwin A Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2091106/publications.pdf Version: 2024-02-01

FOWIN & YATES

#	Article	IF	CITATIONS
1	N-Acylhomoserine Lactones Undergo Lactonolysis in a pH-, Temperature-, and Acyl Chain Length-Dependent Manner during Growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection and Immunity, 2002, 70, 5635-5646.	1.0	560
2	Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology, 1996, 6, 131-139.	1.3	273
3	Interactions of heparin/heparan sulfate with proteins: Appraisal of structural factors and experimental approaches. Glycobiology, 2004, 14, 17R-30R.	1.3	231
4	Heparan sulfate and heparin interactions with proteins. Journal of the Royal Society Interface, 2015, 12, 20150589.	1.5	229
5	Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thrombosis and Haemostasis, 2020, 120, 1700-1715.	1.8	228
6	Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta, 1996, 198, 452-459.	1.6	213
7	Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's β-secretase. Journal of Cell Biology, 2003, 163, 97-107.	2.3	175
8	1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Carbohydrate Research, 1996, 294, 15-27.	1.1	141
9	Specific Heparan Sulfate Structures Modulate FGF10-mediated Submandibular Gland Epithelial Morphogenesis and Differentiation. Journal of Biological Chemistry, 2008, 283, 9308-9317.	1.6	93
10	Specific heparan sulfate structures involved in retinal axon targeting. Development (Cambridge), 2002, 129, 61-70.	1.2	90
11	Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Research, 2017, 140, 13-17.	1.9	88
12	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	13.7	87
13	Unfractionated heparin inhibits live wild type SARS oVâ€2 cell infectivity at therapeutically relevant concentrations. British Journal of Pharmacology, 2021, 178, 626-635.	2.7	73
14	Heparin Derivatives as Inhibitors of BACE-1, the Alzheimer's Î ² -Secretase, with Reduced Activity against Factor Xa and Other Proteases. Journal of Medicinal Chemistry, 2006, 49, 6129-6132.	2.9	69
15	Diversification of the Structural Determinants of Fibroblast Growth Factor-Heparin Interactions. Journal of Biological Chemistry, 2012, 287, 40061-40073.	1.6	69
16	Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Glycobiology, 2007, 17, 983-993.	1.3	66
17	Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Central Science, 2022, 8, 527-545.	5.3	62
18	New Applications of Heparin and Other Glycosaminoglycans. Molecules, 2017, 22, 749.	1.7	60

#	Article	IF	CITATIONS
19	Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nature Communications, 2020, 11, 646.	5.8	58
20	Effect of substitution pattern on 1H, 13C NMR chemical shifts and 1JCH coupling constants in heparin derivatives. Carbohydrate Research, 2000, 329, 239-247.	1.1	54
21	High sensitivity separation and detection of heparan sulfate disaccharides. Journal of Chromatography A, 2006, 1135, 52-56.	1.8	54
22	Differential Scanning Fluorimetry Measurement of Protein Stability Changes upon Binding to Glycosaminoglycans: A Screening Test for Binding Specificity. Analytical Chemistry, 2010, 82, 3796-3802.	3.2	53
23	Intrinsic tryptophan fluorescence spectroscopy reliably determines galectin-ligand interactions. Scientific Reports, 2019, 9, 11851.	1.6	52
24	The conformation and structure of GAGs: recent progress and perspectives. Current Opinion in Structural Biology, 2010, 20, 567-574.	2.6	51
25	Glycosaminoglycan origin and structure revealed by multivariate analysis of NMR and CD spectra. Glycobiology, 2009, 19, 52-67.	1.3	50
26	Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification. Open Biology, 2016, 6, 150275.	1.5	50
27	Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-Î ² Fibrils. Journal of the American Chemical Society, 2016, 138, 8328-8331.	6.6	48
28	Disaccharide compositional analysis of heparan sulfate and heparin polysaccharides using UV or high-sensitivity fluorescence (BODIPY) detection. Nature Protocols, 2010, 5, 1983-1992.	5.5	47
29	Generating heparan sulfate saccharide libraries for glycomics applications. Nature Protocols, 2010, 5, 821-833.	5.5	47
30	Human (α2→6) and Avian (α2→3) Sialylated Receptors of Influenza A Virus Show Distinct Conformations and Dynamics in Solution. Biochemistry, 2013, 52, 7217-7230.	1.2	45
31	Rapid Purification and High Sensitivity Analysis of Heparan Sulfate from Cells and Tissues. Journal of Biological Chemistry, 2009, 284, 25714-25722.	1.6	44
32	Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget, 2015, 6, 23671-23687.	0.8	43
33	Differentiation of Generic Enoxaparins Marketed in the United States by Employing NMR and Multivariate Analysis. Analytical Chemistry, 2015, 87, 8275-8283.	3.2	42
34	Microwave enhanced reaction of carbohydrates with amino-derivatised labels and glass surfaces. Journal of Materials Chemistry, 2003, 13, 2061.	6.7	41
35	Inhibition of influenza H5N1 invasion by modified heparin derivatives. MedChemComm, 2015, 6, 640-646.	3.5	40
36	Structural Determinants of Heparan Sulphate Modulation of GDNF Signalling. Growth Factors, 2003, 21, 109-119.	0.5	39

#	Article	IF	CITATIONS
37	Highly Diverse Heparan Sulfate Analogue Libraries:  Providing Access to Expanded Areas of Sequence Space for Bioactivity Screening. Journal of Medicinal Chemistry, 2004, 47, 277-280.	2.9	39
38	Protein–GAG interactions: new surface-based techniques, spectroscopies and nanotechnology probes. Biochemical Society Transactions, 2006, 34, 427-430.	1.6	38
39	The Activities of Heparan Sulfate and its Analogue Heparin are Dictated by Biosynthesis, Sequence, and Conformation. Connective Tissue Research, 2008, 49, 140-144.	1.1	38
40	Investigations into the occurrence of plant cell surface epitopes in exudate gums. Carbohydrate Polymers, 1994, 24, 281-286.	5.1	36
41	Lactate Stimulation of Gonococcal Metabolism in Media Containing Glucose: Mechanism, Impact on Pathogenicity, and Wider Implications for Other Pathogens. Infection and Immunity, 2001, 69, 6565-6572.	1.0	36
42	The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. Molecular BioSystems, 2017, 13, 852-865.	2.9	36
43	Software Tool for the Structural Determination of Glycosaminoglycans by Mass Spectrometry. Analytical Chemistry, 2008, 80, 9204-9212.	3.2	33
44	A highly efficient tree structure for the biosynthesis of heparan sulfate accounts for the commonly observed disaccharides and suggests a mechanism for domain synthesis. Molecular BioSystems, 2012, 8, 1499.	2.9	33
45	A non-hemorrhagic hybrid heparin/heparan sulfate with anticoagulant potential. Carbohydrate Polymers, 2014, 99, 372-378.	5.1	33
46	Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
47	Engineered Heparins: Novel β-Secretase Inhibitors as Potential Alzheimer's Disease Therapeutics. Neurodegenerative Diseases, 2008, 5, 197-199.	0.8	30
48	A heparin-like glycosaminoglycan from shrimp containing high levels of 3-O-sulfated d-glucosamine groups in an unusual trisaccharide sequence. Carbohydrate Research, 2014, 390, 59-66.	1.1	30
49	Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships. Organic and Biomolecular Chemistry, 2010, 8, 5390.	1.5	29
50	Raman and Raman optical activity of glycosaminoglycans. Chemical Communications, 2010, 46, 4124.	2.2	29
51	Disruption of Rosetting in Plasmodium falciparum Malaria with Chemically Modified Heparin and Low Molecular Weight Derivatives Possessing Reduced Anticoagulant and Other Serine Protease Inhibition Activities. Journal of Medicinal Chemistry, 2008, 51, 1453-1458.	2.9	26
52	Construction and use of a library of bona fide heparins employing 1H NMR and multivariate analysis. Analyst, The, 2011, 136, 1380.	1.7	26
53	Site‧pecific Identification of an Aβ Fibril–Heparin Interaction Site by Using Solid‧tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 13140-13143.	7.2	26
54	Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochemical Society Transactions, 2018, 46, 609-617.	1.6	26

#	Article	IF	CITATIONS
55	The potential for circular dichroism as an additional facile and sensitive method of monitoring low-molecular-weight heparins and heparinoids. Thrombosis and Haemostasis, 2009, 102, 874-878.	1.8	25
56	A New Approach for Heparin Standardization: Combination of Scanning UV Spectroscopy, Nuclear Magnetic Resonance and Principal Component Analysis. PLoS ONE, 2011, 6, e15970.	1.1	25
57	Identification of Heparin Modifications and Polysaccharide Inhibitors of Plasmodium falciparum Merozoite Invasion That Have Potential for Novel Drug Development. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	25
58	Sulfated polysaccharides interact with fibroblast growth factors and protect from denaturation. FEBS Open Bio, 2019, 9, 1477-1487.	1.0	25
59	Analysis of the fibroblast growth factor receptor (<scp>FGFR</scp>) signalling network with heparin as coreceptor: evidence for the expansion of the core <scp>FGFR</scp> signalling network. FEBS Journal, 2013, 280, 2260-2270.	2.2	24
60	Antithrombin stabilisation by sulfated carbohydrates correlates with anticoagulant activity. MedChemComm, 2013, 4, 870.	3.5	24
61	Unravelling Structural Information from Complex Mixtures Utilizing Correlation Spectroscopy Applied to HSQC Spectra. Analytical Chemistry, 2013, 85, 7487-7493.	3.2	24
62	High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of 1H NMR spectra. Analyst, The, 2011, 136, 1390.	1.7	23
63	Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils. Journal of Molecular Biology, 2017, 429, 2449-2462.	2.0	23
64	SimpleDSFviewer: A tool to analyze and view differential scanning fluorimetry data for characterizing protein thermal stability and interactions. Protein Science, 2020, 29, 19-27.	3.1	23
65	How To Find a Needle (or Anything Else) in a Haystack: Two-Dimensional Correlation Spectroscopy-Filtering with Iterative Random Sampling Applied to Pharmaceutical Heparin. Analytical Chemistry, 2012, 84, 6841-6847.	3.2	22
66	Enhanced Tumorigenic Potential of Colorectal Cancer Cells by Extracellular Sulfatases. Molecular Cancer Research, 2015, 13, 510-523.	1.5	22
67	Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydrate Polymers, 2015, 117, 400-407.	5.1	22
68	Conformational degeneracy restricts the effective information content of heparan sulfate. Molecular BioSystems, 2010, 6, 902.	2.9	21
69	A further unique chondroitin sulfate from the shrimp Litopenaeus vannamei with antithrombin activity that modulates acute inflammation. Carbohydrate Polymers, 2019, 222, 115031.	5.1	21
70	Modifications under basic conditions of the minor sequences of heparin containing 2,3 or 2,3,6 sulfatedd-glucosamine residues. Carbohydrate Research, 1997, 302, 103-108.	1.1	19
71	Selective Detection of Protein Secondary Structural Changes in Solution Proteinâ~Polysaccharide Complexes Using Vibrational Circular Dichroism (VCD). Journal of the American Chemical Society, 2008, 130, 2138-2139.	6.6	19
72	Potential role for <i>Streptococcus gordonii</i> â€derived hydrogen peroxide in heme acquisition by <i>Porphyromonas gingivalis</i> . Molecular Oral Microbiology, 2018, 33, 322-335.	1.3	19

#	Article	IF	CITATIONS
73	The crystal and molecular structure of 2-sulfamino-2-deoxy-î±-d-glucopyranose sodium salt·2H2O (glucosamine 2-sulfate). International Journal of Biological Macromolecules, 1995, 17, 219-226.	3.6	18
74	Attachment of glycosaminoglycan oligosaccharides to thiol-derivatised gold surfaces. Chemical Communications, 2004, , 2700.	2.2	18
75	Low sulfated heparins target multiple proteins for central nervous system repair. Glia, 2019, 67, 668-687.	2.5	18
76	By-Products of Heparin Production Provide a Diverse Source of Heparin-like and Heparan Sulfate Glycosaminoglycans. Scientific Reports, 2019, 9, 2679.	1.6	18
77	New tools for carbohydrate sulfation analysis: heparan sulfate 2- <i>O</i> -sulfotransferase (HS2ST) is a target for small-molecule protein kinase inhibitors. Biochemical Journal, 2021, 475, 2417-2433.	1.7	17
78	Cations Modulate Polysaccharide Structure To Determine FGFâ^'FGFR Signaling: A Comparison of Signaling and Inhibitory Polysaccharide Interactions with FGF-1 in Solution. Biochemistry, 2009, 48, 4772-4779.	1.2	16
79	Exploiting a 13C-labelled heparin analogue for in situ solid-state NMR investigations of peptide-glycan interactions within amyloid fibrils. Organic and Biomolecular Chemistry, 2009, 7, 2414.	1.5	16
80	A robust method to quantify low molecular weight contaminants in heparin: detection of tris(2-n-butoxyethyl) phosphate. Analyst, The, 2011, 136, 2330.	1.7	16
81	Low molecular weight heparins: Structural differentiation by spectroscopic and multivariate approaches. Carbohydrate Polymers, 2011, 85, 903-909.	5.1	16
82	Aggregation Kinetics and Filament Structure of a Tau Fragment Are Influenced by the Sulfation Pattern of the Cofactor Heparin. Biochemistry, 2020, 59, 4003-4014.	1.2	16
83	Chemical Modification of Glycosaminoglycan Polysaccharides. Molecules, 2021, 26, 5211.	1.7	16
84	Inhibition of BACE1, the β-secretase implicated in Alzheimer's disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regeneration Research, 2020, 15, 1546.	1.6	16
85	Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nature Chemical Biology, 2022, 18, 841-849.	3.9	16
86	Engineered Bio-Active Polysaccharides from Heparin. Macromolecular Bioscience, 2006, 6, 681-686.	2.1	15
87	Marine glycosaminoglycan-like carbohydrates as potential drug candidates for infectious disease. Biochemical Society Transactions, 2018, 46, 919-929.	1.6	15
88	Insights into the Human Glycan Receptor Conformation of 1918 Pandemic Hemagglutinin–Glycan Complexes Derived from Nuclear Magnetic Resonance and Molecular Dynamics Studies. Biochemistry, 2014, 53, 4122-4135.	1.2	14
89	Recent innovations in the structural analysis of heparin. International Journal of Cardiology, 2016, 212, S5-S9.	0.8	14
90	Insights into the role of 3-O-sulfotransferase in heparan sulfate biosynthesis. Organic and Biomolecular Chemistry, 2017, 15, 6792-6799.	1.5	14

#	Article	IF	CITATIONS
91	Characterisation of the interaction of neuropilin-1 with heparin and a heparan sulfate mimetic library of heparin-derived sugars. PeerJ, 2014, 2, e461.	0.9	14
92	Glycation of Host Proteins Increases Pathogenic Potential of Porphyromonas gingivalis. International Journal of Molecular Sciences, 2021, 22, 12084.	1.8	14
93	Synthesis and X-ray crystallographic structure determination of methyl α-d-galactopyranoside 2,6-bis(sodium sulfate) · 2H2O. Carbohydrate Research, 1993, 241, 89-98.	1.1	12
94	Novel heparan sulphate analogues: inhibition of β-secretase cleavage of amyloid precursor protein. Biochemical Society Transactions, 2005, 33, 1116.	1.6	12
95	Nuclear Magnetic Resonance and Molecular Dynamics Simulation of the Interaction between Recognition Protein H7 of the Novel Influenza Virus H7N9 and Glycan Cell Surface Receptors. Biochemistry, 2016, 55, 6605-6616.	1.2	12
96	Interaction with the heparin-derived binding inhibitors destabilizes galectin-3 protein structure. Biochemical and Biophysical Research Communications, 2020, 523, 336-341.	1.0	12
97	Pentosan Polysulfate Inhibits Attachment and Infection by SARS-CoV-2 In Vitro: Insights into Structural Requirements for Binding. Thrombosis and Haemostasis, 2022, 122, 984-997.	1.8	12
98	A semi-synthetic glycosaminoglycan analogue inhibits and reverses Plasmodium falciparum cytoadherence. PLoS ONE, 2017, 12, e0186276.	1.1	11
99	Should We Be Worried About Clostridioides difficile During the SARS-CoV2 Pandemic?. Frontiers in Microbiology, 2020, 11, 581343.	1.5	11
100	Evidence for a heparin derivative containing an N-sulfated aziridine ring that retains high anti-factor Xa activity. Carbohydrate Research, 1997, 298, 335-340.	1.1	10
101	Introduction to the Molecules Special Edition Entitled â€~Heparan Sulfate and Heparin: Challenges and Controversies': Some Outstanding Questions in Heparan Sulfate and Heparin Research. Molecules, 2019, 24, 1399.	1.7	10
102	In a medium containing glucose, lactate carbon is incorporated by gonococci predominantly into fatty acids and glucose carbon incorporation is increased: implications regarding lactate stimulation of metabolism. International Journal of Medical Microbiology, 2000, 290, 627-639.	1.5	9
103	MYCN-Dependent Expression of Sulfatase-2 Regulates Neuroblastoma Cell Survival. Cancer Research, 2014, 74, 5999-6009.	0.4	9
104	On the catalytic mechanism of polysaccharide lyases: evidence of His and Tyr involvement in heparin lysis by heparinase I and the role of Ca ²⁺ . Molecular BioSystems, 2014, 10, 54-64.	2.9	9
105	Multivariate analysis applied to complex biological medicines. Faraday Discussions, 2019, 218, 303-316.	1.6	9
106	NMR spectroscopy and chemometric models to detect a specific non-porcine ruminant contaminant in pharmaceutical heparin. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114724.	1.4	9
107	Johann Peter Griess FRS (1829–88): Victorian brewer and synthetic dye chemist. Notes and Records of the Royal Society, 2016, 70, 65-81.	0.1	8
108	Terahertz: dictating the frequency of life. Do macromolecular vibrational modes impose thermal limitations on terrestrial life?. Journal of the Royal Society Interface, 2017, 14, 20170673.	1.5	8

#	Article	IF	CITATIONS
109	Glycosaminoglycans from Litopenaeus vannamei Inhibit the Alzheimer's Disease β Secretase, BACE1. Marine Drugs, 2021, 19, 203.	2.2	8
110	Structural studies of O-sulfated D-glucosamines. The crystal and molecular structures of 2-amino-2-deoxy-α/ β-D-glucopyranose 3-sulfate (free acid) and 2-amino-2-deoxy-β-D-glucopyranose 6-sulfate (free base). Carbohydrate Research, 1995, 266, 65-74.	1.1	7
111	Fundamental differences in model cell-surface polysaccharides revealed by complementary optical and spectroscopic techniques. Soft Matter, 2012, 8, 6521.	1.2	7
112	A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation. Biochemical and Biophysical Research Communications, 2012, 425, 794-799.	1.0	7
113	Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity. Molecular BioSystems, 2016, 12, 3166-3175.	2.9	7
114	Investigating the relationship between temperature, conformation and calcium binding in heparin model oligosaccharides. Carbohydrate Research, 2017, 438, 58-64.	1.1	7
115	Synthesis and toxicity profile in 293 human embryonic kidney cells of the β D-glucuronide derivatives of ortho-, meta- and para-cresol. Carbohydrate Research, 2021, 499, 108225.	1.1	7
116	The redox potential interferes with the expression of laminin binding molecules in Bacteroides fragilis. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 683-689.	0.8	6
117	Variations in the Peritrophic Matrix Composition of Heparan Sulphate from the Tsetse Fly, Glossina morsitans. Pathogens, 2018, 7, 32.	1.2	6
118	A Glycosaminoglycan Extract from Portunus pelagicus Inhibits BACE1, the β Secretase Implicated in Alzheimer's Disease. Marine Drugs, 2019, 17, 293.	2.2	6
119	Editorial: Heparan Sulfate Proteoglycans and Their Endogenous Modifying Enzymes: Cancer Players, Biomarkers and Therapeutic Targets. Frontiers in Oncology, 2020, 10, 195.	1.3	6
120	Hydrolytic Degradation of Heparin in Acidic Environments: Nuclear Magnetic Resonance Reveals Details of Selective Desulfation. ACS Applied Materials & Interfaces, 2021, 13, 5551-5563.	4.0	6
121	Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. Biochemical Journal, 2021, 478, 735-748.	1.7	6
122	Using NMR to Dissect the Chemical Space and <i>O</i> -Sulfation Effects within the <i>O</i> - and <i>S</i> -Glycoside Analogues of Heparan Sulfate. ACS Omega, 2022, 7, 24461-24467.	1.6	6
123	Anaerobe/aerobe environmental flux determines protein expression profiles of Bacteroides fragilis, a redox pathogen. Anaerobe, 2011, 17, 4-14.	1.0	5
124	Heparan sulphate, its derivatives and analogues share structural characteristics that can be exploited, particularly in inhibiting microbial attachment. Brazilian Journal of Medical and Biological Research, 2012, 45, 386-391.	0.7	5
125	Heparan sulfate phage display antibodies recognise epitopes defined by a combination of sugar sequence and cation binding. Organic and Biomolecular Chemistry, 2015, 13, 6066-6072.	1.5	5
126	19F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy. Glycoconjugate Journal, 2017, 34, 405-410.	1.4	5

#	Article	IF	CITATIONS
127	Tools for the Quality Control of Pharmaceutical Heparin. Medicina (Lithuania), 2019, 55, 636.	0.8	5
128	ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the delineation of HS biosynthesis. Carbohydrate Polymers, 2021, 255, 117477.	5.1	5
129	Anion binding to a cationic europium(<scp>iii</scp>) probe enables the first real-time assay of heparan sulfotransferase activity. Organic and Biomolecular Chemistry, 2022, 20, 596-605.	1.5	5
130	The latent ampholytic nature of glycosaminoglycan (GAG) oligosaccharides facilitates their separation by isoelectric focusing. Analytical Methods, 2010, 2, 1550.	1.3	4
131	Following Protein–Glycosaminoglycan Polysaccharide Interactions with Differential Scanning Fluorimetry. Methods in Molecular Biology, 2012, 836, 171-182.	0.4	4
132	Lactate carbon does not enter the sugars of lipopolysaccharide when gonococci are grown in a medium containing glucose and lactate: implications in vivo. FEMS Microbiology Letters, 2003, 218, 245-250.	0.7	3
133	Novel heparan sulphate analogues: inhibition of β-secretase cleavage of amyloid precursor protein. Biochemical Society Transactions, 2005, 33, 1116-1118.	1.6	3
134	Surface-Based Studies of Heparin/Heparan Sulfate-Protein Interactions: Considerations for Surface Immobilisation of HS/Heparin Saccharides and Monitoring Their Interactions with Binding Proteins. , 2005, , 345-366.		2
135	Detection of interaction between protein trytophan residues and small or macromolecular ligands by synchrotron radiation magnetic circular dichroism. Analytical Methods, 2015, 7, 1667-1671.	1.3	1
136	Exploration of expanded carbohydrate chemical space to access biological activity using microwave-induced acid condensation of simple sugars. RSC Advances, 2022, 12, 11075-11083.	1.7	1
137	Analysis of protein-heparin interactions using a portable SPR instrument. , 0, 4, e15.		1
138	An Inexpensive, Pulsed, and Multiple Wavelength Bench-Top Light Source for Biological Spectroscopy. Plasma, 2018, 1, 78-89.	0.7	0
139	NMR in the Characterization of Complex Mixture Drugs. AAPS Advances in the Pharmaceutical Sciences Series, 2019, , 115-137.	0.2	0
140	Correction: Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. Biochemical Journal, 2021, 478, 2537-2538.	1.7	0
141	Structural variation in the linkage region of pharmaceutical heparin arising from oxidative treatments during manufacture. Carbohydrate Research, 2022, 514, 108540.	1.1	0