Jürgen Pilz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2091080/publications.pdf

Version: 2024-02-01

89	1,635	17	37
papers	citations	h-index	g-index
115	115	115	1986
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fatal landslides in Europe. Landslides, 2016, 13, 1545-1554.	2.7	238
2	The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 2019, 682, 673-684.	3.9	231
3	Why do we need and how should we implement Bayesian kriging methods. Stochastic Environmental Research and Risk Assessment, 2008, 22, 621-632.	1.9	169
4	Copula-based geostatistical modeling of continuous and discrete data including covariates. Stochastic Environmental Research and Risk Assessment, 2010, 24, 661-673.	1.9	100
5	Minimax linear regression estimation with symmetric parameter restrictions. Journal of Statistical Planning and Inference, 1986, 13, 297-318.	0.4	74
6	INTAMAP: The design and implementation of an interoperable automated interpolation web service. Computers and Geosciences, 2011, 37, 343-352.	2.0	52
7	Bayesian spatial modeling and interpolation using copulas. Computers and Geosciences, 2011, 37, 310-319.	2.0	45
8	Oxidative stress in drug-na \tilde{A} -ve first episode patients with schizophrenia and major depression: effects of disease acuity and potential confounders. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 129-143.	1.8	45
9	Effectiveness of respiratoryâ€sinusâ€arrhythmia biofeedback on stateâ€anxiety in patients undergoing coronary angiography. Journal of Advanced Nursing, 2010, 66, 1101-1110.	1.5	40
10	Bayesian modelling of the effect of climate on malaria in Burundi. Malaria Journal, 2010, 9, 114.	0.8	39
11	Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan. Advances in Water Resources, 2010, 33, 880-886.	1.7	33
12	Climate variability and its impacts on water resources in the Upper Indus Basin under IPCC climate change scenarios. International Journal of Global Warming, 2015, 8, 46.	0.2	30
13	Spatial sampling design and covariance-robust minimax prediction based on convex design ideas. Stochastic Environmental Research and Risk Assessment, 2010, 24, 463-482.	1.9	29
14	Network optimization algorithms and scenarios in the context of automatic mapping. Computers and Geosciences, 2011, 37, 289-294.	2.0	27
15	Objective Bayesian analysis of spatial data with uncertain nugget and range parameters. Canadian Journal of Statistics, 2012, 40, 304-327.	0.6	26
16	A spatial-temporal study for the spread of dengue depending on climate factors in Pakistan (2006–2017). BMC Public Health, 2020, 20, 995.	1.2	24
17	Correlated Parameters to Accurately Measure Uncertainty in Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1037-1051.	7.2	21
18	A Sampling Decision System for Virtual Metrology in Semiconductor Manufacturing. IEEE Transactions on Automation Science and Engineering, 2015, 12, 75-83.	3.4	19

#	Article	IF	CITATIONS
19	Advanced Bayesian Estimation of Weibull Early Life Failure Distributions. Quality and Reliability Engineering International, 2014, 30, 363-373.	1.4	18
20	Spatial Interpolation Using Copula-Based Geostatistical Models. Quantitative Geology and Geostatistics, 2010, , 307-319.	0.1	17
21	Improved hydrological projections and reservoir management in the Upper Indus Basin under the changing climate. Water and Environment Journal, 2017, 31, 235-244.	1.0	17
22	Geo-additive modelling of malaria in Burundi. Malaria Journal, 2011, 10, 234.	0.8	16
23	A new bivariate exponential distribution for modeling moderately negative dependence. Statistical Methods and Applications, 2014, 23, 123-148.	0.7	13
24	A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants. International Journal of Forecasting, 2022, 38, 321-338.	3.9	12
25	Metallogenic efficiency from deposit to region–A case study in western Zhejiang Province, southeastern China. Ore Geology Reviews, 2017, 86, 957-970.	1.1	10
26	An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternaryâ€covered regionâ€"North Baoji District of China. Geological Journal, 2018, 53, 352-363.	0.6	10
27	Integrated Approach for Lithological Classification Using ASTER Imagery in a Shallowly Covered Region—The Eastern Yanshan Mountain of China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4791-4807.	2.3	10
28	A novel approach for modelling pattern and spatial dependence structures between climate variables by combining mixture models with copula models. International Journal of Climatology, 2020, 40, 1049-1066.	1.5	10
29	Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference. Sensors, 2020, 20, 6011.	2.1	10
30	Evaluation of CMIP5 models and ensemble climate projections using a Bayesian approach: a case study of the Upper Indus Basin, Pakistan. Environmental and Ecological Statistics, 2021, 28, 383-404.	1.9	10
31	Linguistic Complexity: Relationships Between Phoneme Inventory Size, Syllable Complexity, Word and Clause Length, and Population Size. Frontiers in Communication, 2021, 6, .	0.6	10
32	Introduction to this special issue on geoinformatics for environmental surveillance. Computers and Geosciences, 2011, 37, 277-279.	2.0	9
33	Homogeneous climate regions in Pakistan. International Journal of Global Warming, 2011, 3, 55.	0.2	9
34	Some advances in Bayesian spatial prediction and sampling design. Spatial Statistics, 2012, 1, 65-81.	0.9	8
35	Monitoring virtual metrology reliability in a sampling decision system. , 2013, , .		8
36	Decision-Theoretical Model for Failures Which are Tackled by Countermeasures. IEEE Transactions on Reliability, 2014, 63, 583-592.	3.5	8

#	Article	IF	Citations
37	A novel approach for extraction of Gaoshanhe-Group outcrops using Landsat Operational Land Imager (OLI) data in the heavily loess-covered Baoji District, Western China. Ore Geology Reviews, 2019, 108, 88-100.	1.1	8
38	An advanced area scaling approach for semiconductor burn-in. Microelectronics Reliability, 2015, 55, 129-137.	0.9	7
39	Evaluation of statistical downscaling models using pattern and dependence structure in the monsoonâ€dominated region of Pakistan. Weather, 2018, 73, 193-203.	0.6	7
40	A Corrected Criterion for Selecting the Optimum Number of Principal Components. Austrian Journal of Statistics, 2016, 38, .	0.2	6
41	Statistical Classification of Different Petrographic Varieties of Aggregates by Means of Near and Mid Infrared Spectra. Mathematical Geosciences, 2007, 38, 851-870.	0.9	5
42	Application of Bayesian networks to predict SMART power semiconductor lifetime. , 2013, , .		5
43	Portable Chamber System for Measuring Chloroform Fluxes from Terrestrial Environments – Methodological Challenges. Environmental Science & Technology, 2013, 47, 14298-14305.	4.6	5
44	Failure probability estimation with differently sized reference products for semiconductor burnâ€in studies. Applied Stochastic Models in Business and Industry, 2015, 31, 732-744.	0.9	5
45	An Explicit Solution for Image Restoration using Markov Random Fields. Journal of Signal Processing Systems, 2020, 92, 257-267.	1.4	5
46	A novel Bayesian approach for variable selection in linear regression models. Computational Statistics and Data Analysis, 2020, 144, 106881.	0.7	5
47	Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers. Chemosphere, 2020, 258, 127231.	4.2	5
48	Application of unsupervised learning of finite mixture models in ASTER VNIR data-driven land use classification. Journal of Spatial Science, 2021, 66, 89-112.	1.0	5
49	Bayesian Trans-Gaussian Kriging with Log-Log Transformed Skew Data. , 2009, , 29-43.		5
50	Statistical Analysis of QKD Networks in Real-Life Environments. , 2009, , .		4
51	Dynamic Maintenance in semiconductor manufacturing using Bayesian networks. , 2011, , .		4
52	A Bayesian approach to estimating linear mixtures with unknown covariance structure. Journal of Applied Statistics, 2011, 38, 1801-1817.	0.6	4
53	Sampling Decision System in semiconductor manufacturing using Virtual Metrology. , 2012, , .		4
54	A new bivariate Gamma distribution generated from functional scale parameter with application to drought data. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1039-1054.	1.9	4

#	Article	IF	CITATIONS
55	Uncertainty Estimation in Deep Neural Networks for Point Cloud Segmentation in Factory Planning. Modelling, 2021, 2, 1-17.	0.8	4
56	Support Vector Machines for Classification ofÂAggregates by Means of IR-Spectra. Mathematical Geosciences, 2007, 39, 307-319.	0.9	3
57	Impact of increased temperature on malaria transmission in Burundi. International Journal of Global Warming, 2011, 3, 77.	0.2	3
58	On the performance of a new bivariate pseudo Pareto distribution with application to drought data. Stochastic Environmental Research and Risk Assessment, 2012, 26, 925-945.	1.9	3
59	Device level Maverick screening - detection of risk devices through Independent Component Analysis. , 2014, , .		3
60	Failure probability estimation under additional subsystem information with application to semiconductor burn-in. Journal of Applied Statistics, 2017, 44, 955-967.	0.6	3
61	Point Based Deep Learning to Automate Automotive Assembly Simulation Model Generation with Respect to the Digital Factory. , 2020, , .		3
62	From a Point Cloud to a Simulation Modelâ€"Bayesian Segmentation and Entropy Based Uncertainty Estimation for 3D Modelling. Entropy, 2021, 23, 301.	1.1	3
63	A sampling decision system for semiconductor manufacturing - relying on virtual metrology and actual measurements. , 2014, , .		2
64	Estimation of nonstrict Archimedean copulas and its application to quantum networks. Applied Stochastic Models in Business and Industry, 2015, 31, 464-482.	0.9	2
65	Stochastic model for drought analysis of the Colorado River Basin. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1637.	1.9	2
66	On the equivalence of spectral theory and bayesian analysis in minimax linear estimation. Acta Applicandae Mathematicae, 1996, 43, 43-57.	0.5	1
67	Applying Bayesian mixtures-of-experts models to statistical description of smart power semiconductor reliability. Microelectronics Reliability, 2011, 51, 1464-1468.	0.9	1
68	Likelihood and objective Bayesian modeling of acidity and major ions in rainfall using a bivariate pseudo-Gamma distribution. Computers and Geosciences, 2013, 54, 269-278.	2.0	1
69	Modeling and prediction of smart power semiconductor lifetime data using a Gaussian process prior. , 2014, , .		1
70	Survey of recent advanced statistical models for early life failure probability assessment in semiconductor manufacturing. , 2014, , .		1
71	Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data. Risk Analysis, 2015, 35, 1623-1639.	1.5	1
72	Unsupervised Algorithm to Detect Damage Patterns in Microstructure Images of Metal Films. , 2018, , .		1

#	Article	IF	Citations
73	Benefits and Application of Tree Structures in Gaussian Process Models to Optimize Magnetic Field Shaping Problems. Springer Proceedings in Mathematics and Statistics, 2018, , 161-170.	0.1	1
74	Robust additive Gaussian process models using reference priors and cut-off-designs. Applied Mathematical Modelling, 2019, 65, 586-596.	2.2	1
75	Exact Confidence Intervals for the Hazard Rate of a Series Reliability System. , 2020, , .		1
76	Flexible time reduction method for burnâ€in of highâ€quality products. Quality and Reliability Engineering International, 2021, 37, 2900-2915.	1.4	1
77	Modelling and sensitivity analysis of river flow in the Upper Indus Basin, Pakistan. International Journal of Water, $2018,12,1.$	0.1	1
78	An Explicit Distribution to Model the Proportion of Heating Degree Day and Cooling Degree Day. Communications in Statistics Part B: Simulation and Computation, 2016, 45, 2617-2624.	0.6	0
79	Ore- and Bio- Geochemical Survey Based on the Landsat Remotely Sensed Data In and Around the Dexing Porphyry Copper-Polymetal Ore-Field, Southeastern China. Journal of the Indian Society of Remote Sensing, 2018, 46, 97-107.	1.2	0
80	An Overview on Recent Advances inÂStatistical Burn-In Modeling for Semiconductor Devices. Springer Proceedings in Mathematics and Statistics, 2018, , 371-380.	0.1	0
81	Statistical Methodology for Evaluating Process-Based Climate Models. , 0, , .		0
82	An Empirical Approach That a Two-Stage Procedure is Better Than Bechhofer's Approach. Journal of Statistical Theory and Practice, 2020, 14, 1.	0.3	0
83	A new life time distribution with applications in reliability and environmental sciences. Journal of Statistics and Management Systems, 2021, 24, 453-479.	0.3	0
84	Uncertainty aware deep point based neural network for 3D object classification., 2021,, 66-73.		0
85	Reply to Comment on & Discrete	12.0	0
86	A Recurrence Relation of Hypergeometric Series Through Record Statistics and a Characterization. Applied Mathematics and Information Sciences, 2013, 7, 1307-1310.	0.7	0
87	Assessing the Statistical Quality of RNGs. Quantum Science and Technology, 2020, , 45-64.	1.5	0
88	Presentation of Entrepreneurship Data and Aspects of Spatial Modeling., 2009, , 189-200.		0
89	Daubechies Wavelets for Identification of Rock Variants from IR Spectra. , 2009, , 79-88.		0