Heidi E Hamm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/209074/publications.pdf

Version: 2024-02-01

216 papers 18,652 citations

18436 62 h-index 132 g-index

229 all docs

229 docs citations

times ranked

229

11969 citing authors

#	Article	IF	CITATIONS
1	The 2.0 Ã crystal structure of a heterotrimeric G protein. Nature, 1996, 379, 311-319.	13.7	1,159
2	Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews Molecular Cell Biology, 2008, 9, 60-71.	16.1	981
3	The Many Faces of G Protein Signaling. Journal of Biological Chemistry, 1998, 273, 669-672.	1.6	977
4	The 2.2 \tilde{A} crystal structure of transducin- \hat{l} ± complexed with GTP \hat{l} 3S. Nature, 1993, 366, 654-663.	13.7	901
5	Crystal structure of a GA protein $\hat{l}^2\hat{l}^3$ dimer at 2.1 \tilde{A} resolution. Nature, 1996, 379, 369-374.	13.7	770
6	Structural determinants for activation of the \hat{l}_{\pm} -subunit of a heterotrimeric G protein. Nature, 1994, 369, 621-628.	13.7	703
7	GTPase mechanism of Gproteins from the 1.7-à crystal structure of transducin α - GDP AlFâ^'4. Nature, 1994, 372, 276-279.	13.7	594
8	Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science, 1988, 241, 832-835.	6.0	572
9	Insights into G Protein Structure, Function, and Regulation. Endocrine Reviews, 2003, 24, 765-781.	8.9	565
10	D ₂ Dopamine Receptors in Striatal Medium Spiny Neurons Reduce L-Type Ca ²⁺ Currents and Excitability via a Novel PLCβ1–IP ₃ –Calcineurin-Signaling Cascade. Journal of Neuroscience, 2000, 20, 8987-8995.	1.7	460
11	Molecular Basis for Interactions of G Protein Subunits with Effectors. Science, 1998, 280, 1271-1274.	6.0	409
12	Endothelial Cell-Surface Gp60 Activates Vesicle Formation and Trafficking via Gi-Coupled Src Kinase Signaling Pathway. Journal of Cell Biology, 2000, 150, 1057-1070.	2.3	270
13	NMR structure of a receptor-bound G-protein peptide. Nature, 1993, 363, 276-281.	13.7	269
14	G Protein beta gamma Subunit-Mediated Presynaptic Inhibition: Regulation of Exocytotic Fusion Downstream of Ca2+ Entry. Science, 2001, 292, 293-297.	6.0	246
15	A Novel Bifunctional Phospholipase C That Is Regulated by Gα12 and Stimulates the Ras/Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry, 2001, 276, 2758-2765.	1.6	245
16	Heterotrimeric G proteins. Current Opinion in Cell Biology, 1996, 8, 189-196.	2.6	240
17	Retinal rhythms in chicks: circadian variation in melantonin and serotonin N-acetyltransferase activity Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 4998-5002.	3.3	238
18	RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nature Neuroscience, 2006, 9, 832-842.	7.1	227

#	Article	IF	CITATIONS
19	Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 2319-2322.	3.3	226
20	Protein complement of rod outer segments of the frog retina. Biochemistry, 1986, 25, 4512-4523.	1.2	216
21	How activated receptors couple to G proteins. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4819-4821.	3.3	196
22	Molecular Determinants of Selectivity in 5-Hydroxytryptamine1B Receptor-G Protein Interactions. Journal of Biological Chemistry, 1997, 272, 32071-32077.	1.6	195
23	Structural basis of function in heterotrimeric G proteins. Quarterly Reviews of Biophysics, 2006, 39, 117-166.	2.4	193
24	Interaction of rhodopsin with the G-protein, transducin. BioEssays, 1993, 15, 43-50.	1.2	181
25	A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8925-8929.	3.3	179
26	Functional Selectivity of G Protein Signaling by Agonist Peptides and Thrombin for the Protease-activated Receptor-1*. Journal of Biological Chemistry, 2005, 280, 25048-25059.	1.6	173
27	Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Structural and Molecular Biology, 2006, 13, 772-777.	3.6	171
28	$G\hat{l}^2\hat{l}^3$ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nature Neuroscience, 2005, 8, 597-605.	7.1	170
29	Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes Journal of General Physiology, 1982, 79, 633-655.	0.9	160
30	Structural and functional relationships of heterotrimeric Gâ€proteins. FASEB Journal, 1995, 9, 1059-1066.	0.2	154
31	G protein $\hat{I}^2\hat{I}^3$ directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nature Neuroscience, 2005, 8, 421-425.	7.1	154
32	Mapping of Effector Binding Sites of Transducin α-Subunit Using Gαt/Gαil Chimeras. Journal of Biological Chemistry, 1996, 271, 413-424.	1.6	146
33	Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9420-9424.	3.3	145
34	Erythrocyte G Protein-Coupled Receptor Signaling in Malarial Infection. Science, 2003, 301, 1734-1736.	6.0	141
35	Potent Peptide Analogues of a G Protein Receptor-binding Region Obtained with a Combinatorial Library. Journal of Biological Chemistry, 1996, 271, 361-366.	1.6	140
36	Regulation by light of cyclic nucleotide-dependent protein kinases and their substrates in frog rod outer segments Journal of General Physiology, 1990, 95, 545-567.	0.9	121

#	Article	IF	Citations
37	Thrombin Induces Proteinase-activated Receptor-1 Gene Expression in Endothelial Cells via Activation of Gi-linked Ras/Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry, 1999, 274, 13718-13727.	1.6	117
38	GPCR mediated regulation of synaptic transmission. Progress in Neurobiology, 2012, 96, 304-321.	2.8	114
39	A site on rod G protein alpha subunit that mediates effector activation. Science, 1992, 256, 1031-1033.	6.0	106
40	Essential roles of $\widehat{Gl}\pm 12/13$ signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. Journal of Cell Biology, 2005, 169, 777-787.	2.3	101
41	Phosducin-like protein acts as a molecular chaperone for G protein $\hat{l}^2\hat{l}^3$ dimer assembly. EMBO Journal, 2005, 24, 1965-1975.	3.5	100
42	PAR4, but Not PAR1, Signals Human Platelet Aggregation via Ca2+ Mobilization and Synergistic P2Y12 Receptor Activation. Journal of Biological Chemistry, 2006, 281, 26665-26674.	1.6	99
43	Gα Minigenes Expressing C-terminal Peptides Serve as Specific Inhibitors of Thrombin-mediated Endothelial Activation. Journal of Biological Chemistry, 2001, 276, 25672-25679.	1.6	96
44	Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the \hat{l} /4- and \hat{l} -opioid receptors regulate opioid receptor signaling. Cellular Signalling, 2006, 18, 771-782.	1.7	94
45	RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16339-16344.	3.3	93
46	Antagonists of the Receptor-G Protein Interface Block Gi-coupled Signal Transduction. Journal of Biological Chemistry, 1998, 273, 14912-14919.	1.6	92
47	Light-induced decrease of serotonin N-acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Research, 1983, 266, 287-293.	1.1	89
48	A monoclonal antibody to the alpha subunit of Gk blocks muscarinic activation of atrial K+ channels. Science, 1988, 241, 828-831.	6.0	89
49	A Dominant-Negative Strategy for Studying Roles of G Proteins in Vivo. Journal of Biological Chemistry, 1999, 274, 6610-6616.	1.6	89
50	Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP. Blood, 2006, 107, 2736-2744.	0.6	89
51	Conformational Flexibility and Structural Dynamics in GPCR-Mediated G Protein Activation: A Perspective. Journal of Molecular Biology, 2013, 425, 2288-2298.	2.0	89
52	The $\hat{l}^2\hat{l}^3$ Subunit of Heterotrimeric G Proteins Interacts with RACK1 and Two Other WD Repeat Proteins. Journal of Biological Chemistry, 2002, 277, 49888-49895.	1.6	82
53	$G^{\hat{l}^2\hat{l}^3}$ Interferes with Ca ²⁺ -Dependent Binding of Synaptotagmin to the Soluble <i>N</i> -Ethylmaleimide-Sensitive Factor Attachment Protein Receptor (SNARE) Complex. Molecular Pharmacology, 2007, 72, 1210-1219.	1.0	75
54	Overexpression of Rhodopsin Alters the Structure and Photoresponse of Rod Photoreceptors. Biophysical Journal, 2009, 96, 939-950.	0.2	74

#	Article	IF	Citations
55	PAR1, but Not PAR4, Activates Human Platelets through a Gi/o/Phosphoinositide-3 Kinase Signaling Axis. Molecular Pharmacology, 2007, 71, 1399-1406.	1.0	73
56	Structural and dynamical changes in an Â-subunit of a heterotrimeric G protein along the activation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16194-16199.	3.3	68
57	G protein betaÂ-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4281-4286.	3.3	68
58	An Effector Site That Stimulates G-protein GTPase in Photoreceptors. Journal of Biological Chemistry, 1995, 270, 14319-14324.	1.6	67
59	Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Current Opinion in Genetics and Development, 2007, 17, 40-44.	1.5	66
60	The Carboxyl Terminus of the \hat{I}^3 -Subunit of Rod cGMP Phosphodiesterase Contains Distinct Sites of Interaction with the Enzyme Catalytic Subunits and the \hat{I}_\pm -Subunit of Transducin. Journal of Biological Chemistry, 1995, 270, 13210-13215.	1.6	65
61	The α-Helical Domain of Gαt Determines Specific Interaction with Regulator of G Protein Signaling 9. Journal of Biological Chemistry, 1999, 274, 8770-8778.	1.6	65
62	Interaction of G?? with RACK1 and other WD40 repeat proteins*1. Journal of Molecular and Cellular Cardiology, 2004, 37, 399-406.	0.9	64
63	Erythrocyte G Protein as a Novel Target for Malarial Chemotherapy. PLoS Medicine, 2006, 3, e528.	3.9	64
64	Energetic analysis of the rhodopsinâ \in G-protein complex links the Î \pm 5 helix to GDP release. Nature Structural and Molecular Biology, 2014, 21, 56-63.	3.6	64
65	Conformational Changes in the Amino-Terminal Helix of the G Protein $\hat{l}\pm i1$ Following Dissociation From $\hat{G}^{\hat{l}}$ Subunit and Activation. Biochemistry, 2002, 41, 9962-9972.	1.2	60
66	$\widehat{Gl}\pm12/13$ regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. Journal of Cell Biology, 2009, 184, 909-921.	2.3	60
67	Mechanism of photoreceptor cGMP phosphodiesterase inhibition by its gamma-subunits Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5407-5412.	3.3	59
68	Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7927-7932.	3.3	59
69	RACK1 Regulates Specific Functions of $G\hat{l}^2\hat{l}^3$. Journal of Biological Chemistry, 2004, 279, 17861-17868.	1.6	58
70	Thrombin Modulates the Expression of a Set of Genes Including Thrombospondin-1 in Human Microvascular Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 22172-22180.	1.6	58
71	Protease-Activated Receptor Signaling in Platelets Activates Cytosolic Phospholipase A $<$ sub $>2\hat{l}\pmsub>Differently for Cyclooxygenase-1 and 12-Lipoxygenase Catalysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 435-442.$	1.1	56
72	Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development (Cambridge), 2013, 140, 3028-3039.	1.2	56

#	Article	IF	CITATIONS
73	Activation of Transducin Guanosine Triphosphatase by Two Proteins of the RGS Familyâ€. Biochemistry, 1997, 36, 7638-7643.	1.2	55
74	Aspartic Acid 564 in the Third Cytoplasmic Loop of the Luteinizing Hormone/Choriogonadotropin Receptor Is Crucial for Phosphorylation-independent Interaction with Arrestin2. Journal of Biological Chemistry, 2002, 277, 17916-17927.	1.6	55
75	Protease-Activated Receptor (PAR) 1 and PAR4 Differentially Regulate Factor V Expression from Human Platelets. Molecular Pharmacology, 2013, 83, 781-792.	1.0	55
76	GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4501-4506.	3.3	55
77	[32] Specific peptide probes for G-protein interactions with receptors. Methods in Enzymology, 1994, 237, 423-436.	0.4	54
78	Thrombin Receptors Activate Go Proteins in Endothelial Cells to Regulate Intracellular Calcium and Cell Shape Changes. Journal of Biological Chemistry, 2002, 277, 34143-34149.	1.6	54
79	$G\hat{l}^2\hat{l}^3$ Binds Histone Deacetylase 5 (HDAC5) and Inhibits Its Transcriptional Co-repression Activity. Journal of Biological Chemistry, 2005, 280, 41769-41776.	1.6	53
80	RACK1 Regulates Directional Cell Migration by Acting on $G^{\hat{1}\hat{2}\hat{3}}$ at the Interface with Its Effectors PLC $\hat{1}^2$ and PI3K $\hat{1}^3$. Molecular Biology of the Cell, 2008, 19, 3909-3922.	0.9	53
81	Modulation of the G Protein Regulator Phosducin by Ca2+/Calmodulin-dependent Protein Kinase II Phosphorylation and 14-3-3 Protein Binding. Journal of Biological Chemistry, 2001, 276, 23805-23815.	1.6	51
82	How do Receptors Activate G Proteins?. Advances in Protein Chemistry, 2007, 74, 67-93.	4.4	51
83	$G\hat{l}^2\hat{l}^3$ Activates GSK3 to Promote LRP6-Mediated \hat{l}^2 -Catenin Transcriptional Activity. Science Signaling, 2010, 3, ra37.	1.6	51
84	Rhodopsin Expression Level Affects Rod Outer Segment Morphology and Photoresponse Kinetics. PLoS ONE, 2012, 7, e37832.	1.1	50
85	Dendritic Molecular Transporters Provide Control of Delivery to Intracellular Compartments. Bioconjugate Chemistry, 2007, 18, 403-409.	1.8	49
86	The role of coagulation and platelets in colon cancer-associated thrombosis. American Journal of Physiology - Cell Physiology, 2019, 316, C264-C273.	2.1	48
87	Structural Requirements for the Stabilization of Metarhodopsin II by the C Terminus of the \hat{l}_{\pm} subunit of Transducin. Journal of Biological Chemistry, 2001, 276, 2333-2339.	1.6	47
88	Closely Related G-protein-coupled Receptors Use Multiple and Distinct Domains on G-protein α-Subunits for Selective Coupling. Journal of Biological Chemistry, 2003, 278, 50530-50536.	1.6	47
89	G Protein Signaling: Insights from New Structures. Science Signaling, 2004, 2004, re3-re3.	1.6	47
90	Diffusion of the Second Messengers in the Cytoplasm Acts as a Variability Suppressor of the Single Photon Response in Vertebrate Phototransduction. Biophysical Journal, 2008, 94, 3363-3383.	0.2	47

#	Article	IF	CITATIONS
91	A monoclonal antibody to guanine nucleotide binding protein inhibits the light-activated cyclic GMP pathway in frog rod outer segments Journal of General Physiology, 1984, 84, 265-280.	0.9	46
92	Functional Roles of the Two Domains of Phosducin and Phosducin-like Protein. Journal of Biological Chemistry, 2000, 275, 30399-30407.	1.6	45
93	Interaction of Transducin with Light-activated Rhodopsin Protects It from Proteolytic Digestion by Trypsin. Journal of Biological Chemistry, 1996, 271, 30034-30040.	1.6	44
94	GÂ COOH-Terminal Minigene Vectors Dissect Heterotrimeric G Protein Signaling. Science Signaling, 2002, 2002, pl1-pl1.	1.6	44
95	Preparation and characterization of monoclonal antibodies to several frog rod outer segment proteins Journal of General Physiology, 1984, 84, 251-263.	0.9	42
96	A Conserved Phenylalanine as a Relay between the $\hat{l}\pm 5$ Helix and the GDP Binding Region of Heterotrimeric Gi Protein $\hat{l}\pm 2$ Subunit. Journal of Biological Chemistry, 2014, 289, 24475-24487.	1.6	42
97	Two Amino Acids within the $\hat{l}\pm 4$ Helix of $\hat{Gl}\pm i1$ Mediate Coupling with 5-Hydroxytryptamine1BReceptors. Journal of Biological Chemistry, 1999, 274, 14963-14971.	1.6	41
98	Direct Modulation of Phospholipase D Activity by $G\hat{l}^2\hat{l}^3$. Molecular Pharmacology, 2006, 70, 311-318.	1.0	41
99	Conformational Changes at The Carboxyl Terminus of $\widehat{Gl}\pm$ Occur during G Protein Activation. Journal of Biological Chemistry, 1999, 274, 2379-2385.	1.6	39
100	A Gî±sCarboxyl-Terminal Peptide Prevents GsActivation by the A2AAdenosine Receptor. Molecular Pharmacology, 2000, 58, 226-236.	1.0	39
101	The Myristoylated Amino Terminus of Gαi1 Plays a Critical Role in the Structure and Function of Gαi1 Subunits in Solution. Biochemistry, 2003, 42, 7931-7941.	1.2	39
102	RACK1 Binds to a Signal Transfer Region of $G\hat{l}^2\hat{l}^3$ and Inhibits Phospholipase C \hat{l}^2 2 Activation. Journal of Biological Chemistry, 2005, 280, 33445-33452.	1.6	37
103	Protease-Activated Receptors Differentially Regulate Human Platelet Activation through a Phosphatidic Acid-Dependent Pathway. Molecular Pharmacology, 2007, 71, 686-694.	1.0	37
104	Mathematical Model of the Spatio-Temporal Dynamics of Second Messengers in Visual Transduction. Biophysical Journal, 2003, 85, 1358-1376.	0.2	36
105	DEP Domains: More Than Just Membrane Anchors. Developmental Cell, 2006, 11, 436-438.	3.1	36
106	Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4708-4713.	1.0	35
107	G protein $\hat{l}^2\hat{l}^3$ Subunits Modulate the Number and Nature of Exocytotic Fusion Events in Adrenal Chromaffin Cells Independent of Calcium Entry. Journal of Neurophysiology, 2008, 100, 2929-2939.	0.9	34
108	Disabling the $G\hat{l}^2\hat{l}^3$ -SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Science Signaling, 2019, 12, .	1.6	33

#	Article	IF	CITATIONS
109	$G\hat{l}^2\hat{l}^3$ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. Journal of Biological Chemistry, 2017, 292, 12165-12177.	1.6	32
110	Activation of the Luteinizing Hormone/Choriogonadotropin Hormone Receptor Promotes ADP Ribosylation Factor 6 Activation in Porcine Ovarian Follicular Membranes. Journal of Biological Chemistry, 2001, 276, 33773-33781.	1.6	31
111	Identification of key factors that reduce the variability of the single photon response. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7804-7807.	3.3	31
112	$G\hat{l}^2\hat{l}^3$ Inhibits Exocytosis via Interaction with Critical Residues on Soluble <i>N</i> -Ethylmaleimide-Sensitive Factor Attachment Protein-25. Molecular Pharmacology, 2012, 82, 1136-1149.	1.0	31
113	Modulation of Neurotransmission by GPCRs Is Dependent upon the Microarchitecture of the Primed Vesicle Complex. Journal of Neuroscience, 2014, 34, 260-274.	1.7	31
114	Molecular interactions between the photoreceptor G protein and rhodopsin. Cellular and Molecular Neurobiology, 1991, 11, 563-578.	1.7	30
115	Collybolide is a novel biased agonist of \hat{l}^2 -opioid receptors with potent antipruritic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6041-6046.	3.3	29
116	G <i>βγ</i> Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of G _{i/o} -Coupled G Protein–Coupled Receptors. Molecular Pharmacology, 2016, 89, 75-83.	1.0	29
117	Contributions of Protease-Activated Receptors PAR1 and PAR4 to Thrombin-Induced GPIIbIIIa Activation in Human Platelets. Molecular Pharmacology, 2017, 91, 39-47.	1.0	29
118	Heterosynaptic GABA _B Receptor Function within Feedforward Microcircuits Gates Glutamatergic Transmission in the Nucleus Accumbens Core. Journal of Neuroscience, 2019, 39, 9277-9293.	1.7	29
119	Modeling the Role of Incisures in Vertebrate Phototransduction. Biophysical Journal, 2006, 91, 1192-1212.	0.2	28
120	Thrombin induces osteosarcoma growth, a function inhibited by low molecular weight heparin in vitro and in vivo. Cancer, 2012, 118, 2494-2506.	2.0	28
121	Effect of monoclonal antibody binding on .alphabetagamma. subunit interactions in the rod outer segment G protein, Gt. Biochemistry, 1989, 28, 9873-9880.	1.2	27
122	Irreversible Platelet Activation Requires Protease-Activated Receptor 1-Mediated Signaling to Phosphatidylinositol Phosphates. Molecular Pharmacology, 2009, 76, 301-313.	1.0	27
123	Protease-activated receptor 4 activity promotes platelet granule release and platelet-leukocyte interactions. Platelets, 2019, 30, 126-135.	1.1	27
124	Synthesis of Indole Derived Protease-Activated Receptor 4 Antagonists and Characterization in Human Platelets. PLoS ONE, 2013, 8, e65528.	1.1	27
125	A Specific Domain of Gil^{\pm} Required for the Transactivation of Gil^{\pm} by Tubulin Is Implicated in the Organization of Cellular Microtubules. Journal of Biological Chemistry, 2003, 278, 15285-15290.	1.6	26
126	Loss of Serotonin Transporter Function Alters ADP-mediated Glycoprotein $\hat{l}\pm llb\hat{l}^23$ Activation through Dysregulation of the 5-HT2A Receptor. Journal of Biological Chemistry, 2016, 291, 20210-20219.	1.6	26

#	Article	IF	Citations
127	The expanding roles and mechanisms of G protein–mediated presynaptic inhibition. Journal of Biological Chemistry, 2019, 294, 1661-1670.	1.6	26
128	Design and Use of C-Terminal Minigene Vectors for Studying Role of Heterotrimeric G Proteins. Methods in Enzymology, 2002, 344, 58-69.	0.4	25
129	Coupling Efficiency of Rhodopsin and Transducin in Bicelles. Biochemistry, 2011, 50, 3193-3203.	1.2	25
130	Subunit Structure of Rod cGMP-Phosphodiesterase. Journal of Biological Chemistry, 1996, 271, 25382-25388.	1.6	24
131	Mathematical model of PAR1-mediated activation of human platelets. Molecular BioSystems, 2011, 7, 1129.	2.9	24
132	Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse. PLoS Computational Biology, 2010, 6, e1001031.	1.5	23
133	A Conserved Hydrophobic Core in Gî±i1 Regulates G Protein Activation and Release from Activated Receptor. Journal of Biological Chemistry, 2016, 291, 19674-19686.	1.6	23
134	G Protein Preassembly Rescues Efficacy of W ^{6.48} Toggle Mutations in Neuropeptide Y ₂ Receptor. Molecular Pharmacology, 2018, 93, 387-401.	1.0	22
135	Improved in Vitro Folding of the Y2 G Protein-Coupled Receptor into Bicelles. Frontiers in Molecular Biosciences, 2017, 4, 100.	1.6	22
136	Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in Gαi Subunits,. Biochemistry, 2009, 48, 2630-2642.	1.2	21
137	How Gsl± activates adenylyl cyclase. Nature Structural Biology, 1998, 5, 88-92.	9.7	20
138	Effect of Li+ upon the Mg2+-Dependent Activation of Recombinant Gi $\hat{l}\pm 1$. Archives of Biochemistry and Biophysics, 2001, 388, 7-12.	1.4	20
139	Competition between lithium and magnesium ions for the G-protein transducin in the guanosine 5 $\hat{a} \in \mathbb{Z}$ -diphosphate bound conformation. Journal of Inorganic Biochemistry, 2004, 98, 691-701.	1.5	20
140	Tryptophan207 is involved in the GTP-dependent conformational switch in the ? subunit of the G protein transducin: Chymotryptic digestion patterns of the GTP?S and GDP-bound forms. The Protein Journal, 1993, 12, 215-221.	1.1	19
141	Roles of Gi and $Gq/11$ in Mediating Desensitization of the Luteinizing Hormone/Choriogonadotropin Receptor in Porcine Ovarian Follicular Membranes*. Endocrinology, 1999, 140, 1612-1621.	1.4	18
142	Regulation of Protease-Activated Receptor (PAR) 1 and PAR4 Signaling in Human Platelets by Compartmentalized Cyclic Nucleotide Actions. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 778-788.	1.3	18
143	GPCR regulation of secretion. , 2018, 192, 124-140.		18
144	Receptor-Mediated Changes at the Myristoylated Amino Terminus of $G\hat{l}_{\pm}$ sub>illsub> Proteins. Biochemistry, 2008, 47, 10281-10293.	1.2	17

#	Article	IF	CITATIONS
145	Trp fluorescence reveals an activationâ€dependent cationâ€Ï€ interaction in the Switch II region of Gα _i proteins. Protein Science, 2009, 18, 2326-2335.	3.1	17
146	A Presynaptic Group III mGluR Recruits $\hat{G^2l^3}/SNARE$ Interactions to Inhibit Synaptic Transmission by Cone Photoreceptors in the Vertebrate Retina. Journal of Neuroscience, 2017, 37, 4618-4634.	1.7	17
147	The in vivo specificity of synaptic \hat{Gl}^2 and \hat{Gl}^3 subunits to the $\hat{I}\pm 2a$ adrenergic receptor at CNS synapses. Scientific Reports, 2019, 9, 1718.	1.6	17
148	Myristoylation Exerts Direct and Allosteric Effects on Gα Conformation and Dynamics in Solution. Biochemistry, 2012, 51, 1911-1924.	1.2	16
149	Differential Localization of G Protein $\hat{l}^2\hat{l}^3$ Subunits. Biochemistry, 2014, 53, 2329-2343.	1.2	16
150	Suboptimal Activation of Protease-activated Receptors Enhances $\hat{l}\pm2\hat{l}^21$ Integrin-mediated Platelet Adhesion to Collagen. Journal of Biological Chemistry, 2009, 284, 34640-34647.	1.6	15
151	Platelet Lipidomic Profiling: Novel Insight into Cytosolic Phospholipase A ₂ α Activity and Its Role in Human Platelet Activation. Biochemistry, 2015, 54, 5578-5588.	1.2	14
152	Quantitative Multiple-Reaction Monitoring Proteomic Analysis of $G\hat{I}^2$ and $G\hat{I}^3$ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry, 2017, 56, 5405-5416.	1.2	14
153	Pineal and Retinal Serotonin N-Acetyltransferase Activity: Modulation by Phosphate. Journal of Neurochemistry, 1981, 37, 1567-1572.	2.1	13
154	Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective. Methods in Molecular Biology, 2012, 796, 133-174.	0.4	13
155	Development of a Series of (1-Benzyl-3-(6-methoxypyrimidin-3-yl)-5-(trifluoromethoxy)-1 <i>H</i> i>Hindol-2-yl)methanols as Selective Protease Activated Receptor 4 (PAR4) Antagonists with in Vivo Utility and Activity Against γ-Thrombin. Journal of Medicinal Chemistry, 2016, 59, 7690-7695.	2.9	13
156	Presynaptic mechanisms underlying GABAB-receptor-mediated inhibition of spontaneous neurotransmitter release. Cell Reports, 2022, 38, 110255.	2.9	13
157	Repurposing of a Thromboxane Receptor Inhibitor Based on a Novel Role in Metastasis Identified by Phenome-Wide Association Study. Molecular Cancer Therapeutics, 2020, 19, 2454-2464.	1.9	12
158	Label-Free Detection of G Protein–SNARE Interactions and Screening for Small Molecule Modulators. ACS Chemical Neuroscience, 2012, 3, 69-78.	1.7	11
159	Identification of the minimum PAR4 inhibitor pharmacophore and optimization of a series of 2-methoxy-6-arylimidazo[2,1-b][1,3,4]thiadiazoles. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5481-5486.	1.0	11
160	Disturbing Gtp-Binding Protein Function Through Microinjection Into The Visual Cell Of Limulus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 915-921.	0.6	10
161	The hyperglycemic byproduct methylglyoxal impairs anticoagulant activity through covalent adduction of antithrombin III. Thrombosis Research, 2014, 134, 1350-1357.	0.8	10
162	Visual transduction in vertebrate photoreceptors. Cell Biophysics, 1989, 14, 129-137.	0.4	9

#	Article	IF	CITATIONS
163	2010 Young Investigator Award Winner: Therapeutic Aprotinin Stimulates Osteoblast Proliferation but Inhibits Differentiation and Bone Matrix Mineralization. Spine, 2010, 35, 1008-1016.	1.0	9
164	Linking receptor activation to changes in Sw I and II of $\hat{Gl}\pm$ proteins. Journal of Structural Biology, 2013, 184, 63-74.	1.3	9
165	An Intramolecular Contact in Gî± Transducin That Participates in Maintaining Its Intrinsic GDP Release Rate. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 2001, 4, 282-291.	1.7	7
166	A Transient Interaction between the Phosphate Binding Loop and Switch I Contributes to the Allosteric Network between Receptor and Nucleotide in \widehat{Gl} ±11. Journal of Biological Chemistry, 2014, 289, 11331-11341.	1.6	7
167	Evaluation of the F2R IVS-14A/T PAR1 polymorphism with subsequent cardiovascular events and bleeding in patients who have undergone percutaneous coronary intervention. Journal of Thrombosis and Thrombolysis, 2016, 41, 656-662.	1.0	7
168	Protease Activated Receptors Differentially Regulate Human Platelet Activation through Phosphatidic Acid-Dependent DAG Formation Blood, 2006, 108, 3906-3906.	0.6	7
169	[34] chimeras used to define structural basis of specific functions of Gαt. Methods in Enzymology, 2000, 315, 502-524.	0.4	6
170	Disabling $G\hat{I}^2\hat{I}^3$ -SNAP-25 interaction in gene-targeted mice results in enhancement of long-term potentiation at Schaffer collateral-CA1 synapses in the hippocampus. NeuroReport, 2019, 30, 695-699.	0.6	6
171	NMR structure of a receptor-bound G-protein peptide. Nature, 1997, 390, 424-424.	13.7	5
172	Fracture healing in proteaseâ€activated receptorâ€2 deficient mice. Journal of Orthopaedic Research, 2012, 30, 1271-1276.	1.2	5
173	Extracellular Loop II Modulates GTP Sensitivity of the Prostaglandin EP3 Receptor. Molecular Pharmacology, 2013, 83, 206-216.	1.0	5
174	Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods. PLoS ONE, 2019, 14, e0225948.	1.1	5
175	Physiological roles for neuromodulation via Gi/o GPCRs working through Gβγ–SNARE interaction. Neuropsychopharmacology, 2020, 45, 221-221.	2.8	5
176	Sexual Dimorphism in Stressâ€induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. European Journal of Neuroscience, 2020, 52, 2815-2826.	1.2	5
177	Phototransduction in retinal cones: Analysis of parameter importance. PLoS ONE, 2021, 16, e0258721.	1.1	5
178	Position of rhodopsin photoisomerization on the disk surface confers variability to the rising phase of the single photon response in vertebrate rod photoreceptors. PLoS ONE, 2020, 15, e0240527.	1.1	5
179	Rod cGMP-Phosphodiesterase γ-Subunit: Structure–Function Relationships. Methods, 1993, 5, 220-228.	1.9	4
180	Cyclic AMP-Dependent Phosphoprotein Components I and II Interact with βγ Subunits of Transducin in Frog Rod Outer Segmentsâ€. Biochemistry, 1996, 35, 290-298.	1.2	4

#	Article	IF	CITATIONS
181	Dichotomous effects of exposure to bivalirudin in patients undergoing percutaneous coronary intervention on protease-activated receptor-mediated platelet activation. Journal of Thrombosis and Thrombolysis, 2013, 35, 209-222.	1.0	4
182	Racial Differences in Resistance to P2Y ₁₂ Receptor Antagonists in Type 2 Diabetic Subjects. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 33-43.	1.3	4
183	GÎ ² Î ³ SNARE Interactions and Their Behavioral Effects. Neurochemical Research, 2019, 44, 636-649.	1.6	4
184	Using Peptide Arrays Created by the SPOT Method for Defining Protein-Protein Interactions. Methods in Molecular Biology, 2015, 1278, 307-320.	0.4	4
185	Probing G-protein function. Nature Structural Biology, 1994, 1, 752-754.	9.7	3
186	Dissecting Receptor–G Protein Specificity Using Gα Chimeras. Methods in Enzymology, 2002, 344, 69-81.	0.4	3
187	Defining G Protein βγ Specificity for Effector Recognition. Methods in Enzymology, 2002, 344, 421-434.	0.4	2
188	Structural Characterization of Intact G Protein \hat{l}^3 Subunits by Mass Spectrometry. Methods in Enzymology, 2002, 344, 586-597.	0.4	2
189	$G\hat{l}^2\hat{l}^3$ reduces the number and quantal size of exocytotic events in neurosecretory chromaffin cells. FASEB Journal, 2006, 20, A242.	0.2	2
190	Specificities of $G\hat{l}^2\hat{l}^3$ subunits for the SNARE complex before and after stimulation of \hat{l}_\pm _{2a} -adrenergic receptors. Science Signaling, 2021, 14, eabc4970.	1.6	2
191	Discovery and Optimization of a Novel Series of Competitive and Central Nervous System-Penetrant Protease-Activated Receptor 4 (PAR4) Inhibitors. ACS Chemical Neuroscience, 2021, 12, 4524-4534.	1.7	2
192	[26] Use of peptides-on-plasmids combinatorial library to identify high-affinity peptides that bind rhodopsin. Methods in Enzymology, 2000, 315, 388-404.	0.4	1
193	Fluctuations of the Single Photon Response in Visual Transduction. AIP Conference Proceedings, 2005,	0.3	1
194	Endothelial Nitric-Oxide Synthase Reveals a New Face in G Protein Signaling: Fig. 1 Molecular Pharmacology, 2006, 69, 677-679.	1.0	1
195	Functional Stability of Rhodopsin in a Bicelle System: Evaluating G Protein Activation by Rhodopsin in Bicelles. Methods in Molecular Biology, 2015, 1271, 67-76.	0.4	1
196	G-Protein Organization and Signaling. , 2003, , 335-341.		1
197	A survey of conformational and energetic changes in G protein signaling. AIMS Biophysics, 2015, 2, 630-648.	0.3	1
198	Calcium Mobilization in Human Platelets is Differentially Modulated by PARâ€1 and PARâ€4 through Gi/o and PI3K. FASEB Journal, 2006, 20, .	0.2	1

#	Article	IF	CITATIONS
199	[33] Fluorescent probes as indicators of conformation changes in transducin on activation. Methods in Enzymology, 2000, 315, 490-502.	0.4	0
200	Molecular Determinants of GPCR-G Protein Complex Formation. Biophysical Journal, 2012, 102, 31a-32a.	0.2	0
201	Correction to "Protease-Activated Receptor (PAR) 1 and PAR4 Differentially Regulate Factor V Expression from Human Platelets― Molecular Pharmacology, 2013, 84, 487-487.	1.0	0
202	Structural basis of receptorâ€dependent G protein activation. FASEB Journal, 2006, 20, A918.	0.2	0
203	Ga12/13 signaling regulates epiboly by inhibiting Eâ€cadherin function. FASEB Journal, 2006, 20, A544.	0.2	0
204	RACK1 negatively regulates SDF1α/CXCL12â€stimulated chemotaxis of Jurkat cells. FASEB Journal, 2006, 20, A696.	0.2	0
205	The crystal structure of the fast exchange mutant I56C/Q333C in Gα _{i1} suggests a mechanism for receptorâ€mediated allosteric nucleotide exchange. FASEB Journal, 2007, 21, A613.	0.2	0
206	Plâ€3K differentially regulates protease activated receptorâ€mediated platelet activation in humans through Rap1. FASEB Journal, 2007, 21, A603.	0.2	0
207	Irreversible Platelet Activation Requires PAR1 Regulation of Phosphatidylinositol Phosphates (PIPns) Activation of Rap1 Blood, 2007, 110, 3889-3889.	0.6	0
208	An intramolecular binding site for the myristoylated aminoâ€ŧerminus of Gα i. FASEB Journal, 2008, 22, 812.9.	0.2	0
209	PAR1â€mediated stable platelet aggregation requires temporal regulation of Rap1 activity by phosphatidylinositol phosphates (PIPns) FASEB Journal, 2008, 22, 646.3.	0.2	0
210	How do GPCRs Catalyze G Protein Activation?. FASEB Journal, 2009, 23, 330.1.	0.2	0
211	Myristoylation and its role in conformational changes associated with Galphai subunit activation. FASEB Journal, 2009, 23, 879.9.	0.2	0
212	Role of GÎ ² Î ³ in regulation of class II histone deacetylases. FASEB Journal, 2010, 24, 457.1.	0.2	0
213	Coupling Efficiency of Rhodopsin and Transducin in the Bicelle Mixtures. FASEB Journal, 2010, 24, 769.7.	0.2	0
214	Coagulation Cofactor Presentation and Complex Assembly on Platelets by Protease Activated Receptors (PARs): PAR4 Stimulation Leads to More FV and FVIII and More Thrombin Generation Than PAR1. Blood, 2011, 118, 1135-1135.	0.6	0
215	Communicating a Nobel Signal: Exploration of the Heterotrimeric G protein. FASEB Journal, 2013, 27, lb164.	0.2	0
216	Platelet Microparticle Production Is Regulated By STIM1 Dependent Entry Of Extracellular Ca2+ Through Orai1. Blood, 2013, 122, 1059-1059.	0.6	0