List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interplay of chemical structure, physical properties, and structural design as a tool to modulate the properties of melanins within mesopores. Scientific Reports, 2022, 12, .	3.3	3
2	Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100295.	7.3	14
3	Gradient-based and wavelet-based compressed sensing approaches for highly undersampled tomographic datasets. Ultramicroscopy, 2021, 225, 113289.	1.9	3
4	Argon cluster cleaning of Ga ⁺ FIBâ€milled sections of organic and hybrid materials. Surface and Interface Analysis, 2020, 52, 327-334.	1.8	7
5	Mesopore Formation and Silicon Surface Nanostructuration by Metal-Assisted Chemical Etching With Silver Nanoparticles. Frontiers in Chemistry, 2020, 8, 658.	3.6	15
6	Eumelanin Adsorption on Silicon: Optical Properties of Si(001)-Adsorbed Eumelanin Tetrameric Protomolecules. Journal of Physical Chemistry C, 2020, 124, 9376-9384.	3.1	3
7	Electrochemical Nanolithography on Silicon: An Easy and Scalable Method to Control Pore Formation at the Nanoscale. Materials, 2019, 12, 2891.	2.9	3
8	Extensive stacking of DHI-like monomers as a model of out-of-plane complexity in eumelanin protomolecules: Chemical and structural sensitivity of optical absorption spectra. Chemical Physics, 2019, 524, 92-100.	1.9	8
9	Bifacial Diffuse Absorptance of Semitransparent Microstructured Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10021-10027.	8.0	10
10	Chemical Imaging of Buried Interfaces in Organic–Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry. ACS Applied Materials & Interfaces, 2019, 11, 4500-4506.	8.0	6
11	Physical and Chemical Control of Interface Stability in Porous Si–Eumelanin Hybrids. Journal of Physical Chemistry C, 2018, 122, 28405-28415.	3.1	14
12	Toward an accurate quantification in atom probe tomography reconstruction by correlative electron tomography approach on nanoporous materials. Ultramicroscopy, 2017, 182, 112-117.	1.9	16
13	Doping porous silicon with erbium: pores filling as a method to limit the Er-clustering effects and increasing its light emission. Scientific Reports, 2017, 7, 5957.	3.3	12
14	Deciphering Molecular Mechanisms of Interface Buildup and Stability in Porous Si/Eumelanin Hybrids. International Journal of Molecular Sciences, 2017, 18, 1567.	4.1	15
15	Nonâ€rigid alignment in electron tomography in materials science. Journal of Microscopy, 2016, 263, 312-319.	1.8	3
16	4-Nitrobenzene Grafted in Porous Silicon: Application to Optical Lithography. Nanoscale Research Letters, 2016, 11, 436.	5.7	2
17	Porous silicon–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt: preparation and photocurrent properties. RSC Advances, 2016, 6, 101880-101887. 	3.6	7
18	Self-adapting denoising, alignment and reconstruction in electron tomography in materials science. Ultramicroscopy, 2016, 160, 23-34.	1.9	22

#	Article	IF	CITATIONS
19	Boosting, probing and switching-off visible light-induced photocurrents in eumelanin-porous silicon hybrids. RSC Advances, 2015, 5, 56704-56710.	3.6	8
20	Colloidal synthesis and characterization of Bi ₂ S ₃ nanoparticles for photovoltaic applications. Journal of Physics: Conference Series, 2014, 566, 012017.	0.4	9
21	Electrochemical impedance spectroscopy of oxidized porous silicon. Thin Solid Films, 2014, 556, 311-316.	1.8	12
22	Colloidal Bi ₂ S ₃ Nanocrystals: Quantum Size Effects and Midgap States. Advanced Functional Materials, 2014, 24, 3341-3350.	14.9	65
23	Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals. Nanoscale, 2014, 6, 2238-2243.	5.6	15
24	Controlling the Er content of porous silicon using the doping current intensity. Nanoscale Research Letters, 2014, 9, 332.	5.7	3
25	Electrochemical doping of mesoporous silicon with Er: the effect of the current intensity. Applied Surface Science, 2014, 311, 252-257.	6.1	1
26	Optical, Electrochemical, and Structural Properties of Er-Doped Porous Silicon. Journal of Physical Chemistry C, 2012, 116, 11256-11260.	3.1	14
27	Characterization of Er in porous Si. Nanoscale Research Letters, 2012, 7, 376.	5.7	5
28	Photovoltaic properties of PSi impregnated with eumelanin. Nanoscale Research Letters, 2012, 7, 377.	5.7	22
29	Effect of oxidation level of n+-type mesoporous silicon surface on the adsorption and the catalytic activity of Candida rugosa lipase. Journal of Colloid and Interface Science, 2010, 345, 448-453.	9.4	13
30	Porous silicon-based potentiometric biosensor for triglycerides. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1434-1438.	1.8	36
31	Gallium adsorption on (0001) GaN surfaces. Physical Review B, 2003, 67, .	3.2	131
32	Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN. Journal of Applied Physics, 2002, 91, 9638.	2.5	164
33	Phase Transitions on Gan Surfaces. Materials Research Society Symposia Proceedings, 2002, 743, L3.9.1.	0.1	1
34	Atomic-layer epitaxy of GaN quantum wells and quantum dots on (0001) AlN. Journal of Applied Physics, 2002, 91, 5498-5500.	2.5	13
35	Structure and ordering of GaN quantum dot multilayer investigated by X-ray grazing incidence techniques. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 1115-1118.	2.7	2
36	Strain relaxation in (0001) AlN/GaN heterostructures. Physical Review B, 2001, 63, .	3.2	107

#	Article	IF	CITATIONS
37	Growth and characterisation of self-assembled cubic GaN quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 212-214.	3.5	22
38	Time-Resolved Photoluminescence Studies of Cubic and Hexagonal GaN Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 13-16.	1.5	14
39	Molecular-Beam Epitaxy of GaN: A Phase Diagram. Physica Status Solidi A, 2001, 188, 575-578.	1.7	9
40	Atomic Layer Epitaxy of Hexagonal and Cubic GaN Nanostructures. Physica Status Solidi A, 2001, 188, 673-676.	1.7	2
41	Optical Characterization of MBE Grown Zinc-Blende AlGaN. Physica Status Solidi A, 2001, 188, 695-698.	1.7	8
42	Modified Stranski-Krastanov Growth in Stacked Layers of Self-Assembled Cubic GaN/AlN Quantum Dots. Physica Status Solidi A, 2001, 188, 711-714.	1.7	5
43	Self-Assembled GaN Quantum Dots Grown by Plasma-Assisted Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2001, 40, 1892-1895.	1.5	21
44	Structure and ordering of GaN quantum dot multilayers. Applied Physics Letters, 2001, 79, 1971-1973.	3.3	29
45	Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001). Physical Review B, 2001, 64, .	3.2	131
46	MBE Growth Of GaN Films In Presence Of Surfactants: The Effect Of Mg And Si. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 202-208.	1.0	5
47	Self-assembled zinc blende GaN quantum dots grown by molecular-beam epitaxy. Applied Physics Letters, 2000, 77, 809-811.	3.3	84
48	Mg-modified surface kinetics of the GaN growth by molecular beam epitaxy. Physical Review B, 2000, 61, 10330-10335.	3.2	13
49	Tunable piezoelectric semiconductor laser controlled by the carrier injection level. Applied Physics Letters, 2000, 77, 788-790.	3.3	8
50	Molecular beam epitaxy of GaN, AlN, InN and related alloys: from two- to three-dimensional growth mode. Diamond and Related Materials, 2000, 9, 506-511.	3.9	4
51	Multiperiod piezoelectric-barrier all-optical light modulator. Microelectronics Journal, 1999, 30, 409-412.	2.0	1
52	Laser emission in HgCdTe in the 2–3.5μm range. Journal of Crystal Growth, 1999, 197, 529-536.	1.5	44
53	ll–VI infrared microcavity emitters with 2 postgrowth dielectric mirrors. Journal of Crystal Growth, 1999, 201-202, 1036-1039.	1.5	3
54	Influence of a compressive strain on the stoichiometry of the (001)CdTe surface during molecular beam epitaxy. Journal of Crystal Growth, 1999, 203, 61-66.	1.5	2

#	Article	IF	CITATIONS
55	Mg-Induced Kinetical Changes in the Growth of Cubic and Hexagonal GaN by Molecular Beam Epitaxy. Physica Status Solidi A, 1999, 176, 385-390.	1.7	2
56	Epitaxial Growth of GaN, AlN and InN: 2D/3D Transition and Surfactant Effects. Physica Status Solidi A, 1999, 176, 621-627.	1.7	26
57	MBE Growth of GaN Films in Presence of Surfactants: The Effect of Mg and Si. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
58	The role of 2D islands in the epitaxial growth of (001) CdTe. Applied Surface Science, 1998, 123-124, 283-288.	6.1	5
59	Efficient all-optical light modulation in a piezoelectric heterostructure at room temperature. Applied Physics Letters, 1998, 72, 963-965.	3.3	12
60	Room temperature electro-optic effect in CdHgTe multiple quantum well heterostructures at 1.5 μm. Applied Physics Letters, 1997, 70, 856-858.	3.3	2
61	Novel Piezoelectric Heterostructure for all-Optical Infrared Light Modulation. Materials Research Society Symposia Proceedings, 1997, 484, 171.	0.1	0
62	Novel piezoelectric-barrier heterostructure for all-optical light modulation. Microelectronics Journal, 1997, 28, 1057-1061.	2.0	2
63	Resonant-Cavity Infrared Devices. Materials Research Society Symposia Proceedings, 1996, 450, 239.	0.1	0
64	Recombination mechanisms and lasing in shallowZn0.9Cd0.1Se/ZnSe quantum-well structures. Physical Review B, 1994, 49, 16769-16772.	3.2	56
65	Local interface composition and band discontinuities in heterovalent heterostructures. Physical Review Letters, 1994, 72, 294-297.	7.8	130
66	ZnSe-GaAs heterojunction parameters. Journal of Crystal Growth, 1993, 127, 387-391.	1.5	29
67	Microscopic control of ZnSe-GaAs heterojunction band offsets. Physica B: Condensed Matter, 1993, 185, 557-565.	2.7	30
68	Local Interface Composition and Band Offset Tuning in ZnSe-GaAs(001) Heterostructures. Materials Research Society Symposia Proceedings, 1993, 326, 3.	0.1	2
69	Novel All-Optical Light Transmission Modulator with Piezoelectric Barriers. , 0, , .		0
70	Porous Silicon-based Electrochemical Biosensors. , 0, , .		5