
Trevor J Devries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090505/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows. Journal of Dairy Science, 2019, 102, 11701-11717.	3.4	82
2	Associations between management practices and within-pen prevalence of calf diarrhea and respiratory disease on dairy farms using automated milk feeders. Journal of Dairy Science, 2018, 101, 2293-2308.	3.4	57
3	Distribution of non-aureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. Journal of Dairy Science, 2017, 100, 5613-5627.	3.4	55
4	Investigating the within-herd prevalence and risk factors for ketosis in dairy cattle in Ontario as diagnosed by the test-day concentration of β-hydroxybutyrate in milk. Journal of Dairy Science, 2017, 100, 1308-1318.	3.4	44
5	A survey of dairy calf management practices among farms using manual and automated milk feeding systems in Canada. Journal of Dairy Science, 2017, 100, 6872-6884.	3.4	41
6	Development and validation of a bilingual questionnaire for measuring udder health related management practices on dairy farms. Preventive Veterinary Medicine, 2010, 95, 74-85.	1.9	40
7	Herd-level relationship between antimicrobial use and presence or absence of antimicrobial resistance in gram-negative bovine mastitis pathogens on Canadian dairy farms. Journal of Dairy Science, 2013, 96, 4965-4976.	3.4	35
8	Motivation of naÃ⁻ve feedlot cattle to obtain grain and individual responses to novelty. Applied Animal Behaviour Science, 2017, 197, 68-74.	1.9	33
9	Bacterial concentrations in bedding and their association with dairy cow hygiene and milk quality. Animal, 2020, 14, 1052-1066.	3.3	32
10	Associations of herd- and cow-level factors, cow lying behavior, and risk of elevated somatic cell count in free-stall housed lactating dairy cows. Preventive Veterinary Medicine, 2013, 111, 245-255.	1.9	30
11	A systematic review and meta-analysis of the diagnostic accuracy of point-of-care tests for the detection of hyperketonemia in dairy cows. Preventive Veterinary Medicine, 2016, 130, 18-32.	1.9	29
12	A randomized controlled trial of dexamethasone as an adjunctive therapy to propylene glycol for treatment of hyperketonemia in postpartum dairy cattle. Journal of Dairy Science, 2016, 99, 8991-9000.	3.4	26
13	Effect of feeding amount on the feeding and sorting behaviour of lactating dairy cattle. Canadian Journal of Animal Science, 2011, 91, 47-54.	1.5	23
14	Effects of wheat straw chop length in high-straw dry cow diets on intake, health, and performance of dairy cows across the transition period. Journal of Dairy Science, 2020, 103, 254-271.	3.4	22
15	Domestic cattle (Bos taurus taurus) are motivated to obtain forage and demonstrate contrafreeloading. PLoS ONE, 2018, 13, e0193109.	2.5	20
16	Feeding Behavior, Feed Space, and Bunk Design and Management for Adult Dairy Cattle. Veterinary Clinics of North America - Food Animal Practice, 2019, 35, 61-76.	1.2	20
17	Graduate Student Literature Review: What do we know about the effects of clinical and subclinical hypocalcemia on health and performance of dairy cows?. Journal of Dairy Science, 2021, 104, 6304-6326.	3.4	20
18	Randomized control trial assessing the efficacy of pain control strategies for caustic paste disbudding in dairy calves younger than 9 days of age. Journal of Dairy Science, 2020, 103, 7339-7350.	3.4	18

TREVOR J DEVRIES

#	Article	IF	CITATIONS
19	The daytime feeding frequency affects appetite-regulating hormones, amino acids, physical activity, and respiratory quotient, but not energy expenditure, in adult cats fed regimens for 21 days. PLoS ONE, 2020, 15, e0238522.	2.5	15
20	Associations between maternal characteristics and health, survival, and performance of dairy heifers from birth through first lactation. Journal of Dairy Science, 2020, 103, 823-839.	3.4	14
21	Evaluation of the Johne's disease risk assessment and management plan on dairy farms in Ontario, Canada. Journal of Dairy Science, 2015, 98, 6792-6800.	3.4	13
22	Producer perceptions of manual and automated milk feeding systems for dairy calves in Canada. Canadian Journal of Animal Science, 2018, 98, 250-259.	1.5	13
23	Variability in Risk Assessment and Management Plan (RAMP) scores completed as part of the Ontario Johne's Education and Management Assistance Program(2010–2013). Journal of Dairy Science, 2015, 98, 2419-2426.	3.4	12
24	Effect of age of introduction to an automated milk feeder on calf learning and performance and labor requirements. Journal of Dairy Science, 2018, 101, 9371-9384.	3.4	12
25	Randomized controlled trial assessing the effects of xylazine sedation in 2- to 6-week-old dairy calves disbudded with a cautery iron. Journal of Dairy Science, 2021, 104, 5881-5897.	3.4	12
26	Canine Food Preference Assessment of Animal and Vegetable Ingredient-Based Diets Using Single-Pan Tests and Behavioral Observation. Frontiers in Veterinary Science, 2017, 4, 154.	2.2	11
27	Effects of molasses-based liquid feed supplementation to a high-straw dry cow diet on feed intake, health, and performance of dairy cows across the transition period. Journal of Dairy Science, 2020, 103, 5070-5089.	3.4	11
28	Putting an On-Farm Welfare Assessment Tool into Practice inÂtheÂCanadian Equine Industry–A Pilot Study. Journal of Equine Veterinary Science, 2018, 63, 35-40.	0.9	10
29	Behavioural and physiological responses to pest flies in pastured dairy cows treated with a natural repellent. Applied Animal Behaviour Science, 2018, 207, 1-7.	1.9	10
30	Effect of diet-induced negative energy balance on the feeding behavior of dairy cows. Journal of Dairy Science, 2020, 103, 7288-7301.	3.4	10
31	Comparing ELISA test-positive prevalence, risk factors and management recommendations for Johne's disease prevention between organic and conventional dairy farms in Ontario, Canada. Preventive Veterinary Medicine, 2015, 122, 83-91.	1.9	9
32	Nutrient content changes from steaming or soaking timothy-alfalfa hay: effects on feed preferences and acute glycemic response in Standardbred racehorses1. Journal of Animal Science, 2019, 97, 4199-4207.	0.5	9
33	Investigation of weaning strategy and solid feed location for dairy calves individually fed with an automated milk feeding system. Journal of Dairy Science, 2020, 103, 6533-6556.	3.4	9
34	Ration composition affects short-term diurnal feeding patterns of dairy heifers. Applied Animal Behaviour Science, 2012, 140, 16-24.	1.9	8
35	Moisture content of high-straw dry cow diets affects intake, health, and performance of transition dairy cows. Journal of Dairy Science, 2020, 103, 1500-1515.	3.4	8
36	Body condition loss during the dry period: Insights from feeding behavior studies. Journal of Dairy Science, 2021, 104, 4682-4691.	3.4	8

TREVOR J DEVRIES

#	Article	IF	CITATIONS
37	Effects of concentrate location on the behavior and production of dairy cows milked in a free-traffic automated milking system. Journal of Dairy Science, 2019, 102, 9827-9841.	3.4	7
38	The effect of prepartum negative dietary cation-anion difference and serum calcium concentration on blood neutrophil function in the transition period of healthy dairy cows. Journal of Dairy Science, 2020, 103, 6200-6208.	3.4	7
39	Controlled trial of the effect of negative dietary cation-anion difference on postpartum health of dairy cows. Journal of Dairy Science, 2021, 104, 6929-6943.	3.4	7
40	Effect of plane of nutrition and analgesic drug treatment on wound healing and pain following cautery disbudding in preweaning dairy calves. Journal of Dairy Science, 2022, 105, 6220-6239.	3.4	6
41	Synchronization of Dairy Cows Does Not Limit the Behavioral Response to Treatment in Mixed Treatment Experimental Designs. Frontiers in Veterinary Science, 2016, 3, 98.	2.2	5
42	Incomplete Milking in Early Lactation Does Not Affect Dairy Cows Resting Behaviors: Results from a Randomized Controlled Trial. Frontiers in Veterinary Science, 2017, 4, 66.	2.2	4
43	Controlled trial of the effect of negative dietary cation-anion difference prepartum diets on milk production, reproductive performance, and culling of dairy cows. Journal of Dairy Science, 2021, 104, 6919-6928.	3.4	4
44	Graduate Student Literature Review: Role of pain mitigation on the welfare of dairy calves undergoing disbudding. Journal of Dairy Science, 2022, 105, 6809-6819.	3.4	4
45	Algometer Precision for Quantifying Mechanical Nociceptive Threshold When Applied to the Udder of Lactating Dairy Cows. Frontiers in Veterinary Science, 2018, 5, 215.	2.2	3
46	Behavior, health, and productivity of early-lactation dairy cows supplemented with molasses in automated milking systems. Journal of Dairy Science, 2020, 103, 10506-10518.	3.4	3
47	Short communication: Development and evaluation of equations to predict growth of Holstein dairy heifers in a tropical climate. Journal of Dairy Science, 2021, 104, 525-531.	3.4	3
48	Validation of a point-of-care handheld blood total calcium analyzer in postpartum dairy cows. JDS Communications, 2021, 2, 41-45.	1.5	3
49	Management Practices and Their Potential Influence on Johne's Disease Transmission on Canadian Organic Dairy Farms—A Conceptual Analysis. Sustainability, 2014, 6, 8237-8261.	3.2	2
50	Effect of stall design on dairy calf transition to voluntary feeding on an automatic milk feeder after introduction to group housing. Journal of Dairy Science, 2018, 101, 5307-5316.	3.4	2
51	Cattle priorities. , 2018, , 93-122.		2
52	Risk factors for morbidity in 1- to 9-day-old dairy calves following caustic paste disbudding. JDS Communications, 2021, 2, 376-380.	1.5	2
53	Complete replacement of corn grain with crude glycerin for dairy cows. Livestock Science, 2022, 258, 104893.	1.6	2
54	Erratum to "Risk factors for morbidity in 1- to 9-day-old dairy calves following caustic paste disbudding―(JDS Commun. 2:376–380). JDS Communications, 2022, 3, 167.	1.5	0

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 15, e0238522.		0
56	Title is missing!. , 2020, 15, e0238522.		0
57	Title is missing!. , 2020, 15, e0238522.		0
58	Title is missing!. , 2020, 15, e0238522.		0
59	Male dairy calf welfare: A Canadian perspective on challenges and potential solutions Canadian Veterinary Journal, 2022, 63, 187-193.	0.0	0