Luis Antonio Davalos Orozco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090245/publications.pdf

Version: 2024-02-01

759055 713332 36 517 12 citations h-index papers

g-index 37 37 37 229 docs citations times ranked citing authors all docs

21

#	Article	IF	Citations
1	Nonlinear Sideband Thermocapillary Instability of a Thin Film Coating the Inside of a Thick Walled Cylinder with Finite Thermal Conductivity in the Absence of Gravity. Microgravity Science and Technology, 2020, 32, 105-117.	0.7	10
2	Sideband thermocapillary instability of a thin film flowing down the outside of a thick walled cylinder with finite thermal conductivity. International Journal of Non-Linear Mechanics, 2019, 109, 15-23.	1.4	16
3	Longwave Stability of Two Liquid Layers Coating Both Sides of a Thick Wall in the Absence of Gravity. Microgravity Science and Technology, 2018, 30, 209-228.	0.7	4
4	Thermal Marangoni instability of a thin film flowing down a thick wall deformed in the backside. Physics of Fluids, 2016, 28, .	1.6	9
5	Non-linear instability of a thin film flowing down a cooled wavy thick wall of finite thermal conductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 962-967.	0.9	11
6	Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder. International Journal of Heat and Mass Transfer, 2015, 90, 15-25.	2.5	14
7	Convection in a horizontal fluid layer under an inclined temperature gradient with a negative vertical Rayleigh number. International Journal of Heat and Mass Transfer, 2015, 90, 1214-1220.	2.5	5
8	Competition between stationary and oscillatory viscoelastic thermocapillary convection of a film coating a thick wall. International Journal of Thermal Sciences, 2015, 89, 164-173.	2.6	21
9	Convection in a horizontal fluid layer under an inclined temperature gradient for Prandtl numbers Pr>1. International Journal of Heat and Mass Transfer, 2014, 68, 444-455.	2.5	6
10	The effect of the thermal conductivity and thickness of the wall on the nonlinear instability of a thin film flowing down an incline. International Journal of Non-Linear Mechanics, 2012, 47, 1-7.	1.4	89
11	Effect of thermal conductivity and thickness of the walls in the convection of a viscoelastic Maxwell fluid layer. International Journal of Heat and Mass Transfer, 2011, 54, 5020-5029.	2.5	15
12	Convection in a horizontal fluid layer under an inclined temperature gradient. Physics of Fluids, 2011, 23, .	1.6	27
13	Linear Three Dimensional Instability of Viscoelastic Fluid Layers Flowing Down Cylindrical Walls. Microgravity Science and Technology, 2008, 20, 161-164.	0.7	6
14	Instabilities of Thin Films Flowing Down Flat and Smoothly Deformed Walls. Microgravity Science and Technology, 2008, 20, 225-229.	0.7	31
15	Nonlinear instability of a thin film flowing down a smoothly deformed surface. Physics of Fluids, 2007, 19, .	1.6	56
16	Instability of the interface between two inviscid fluids inside a rotating annulus in the absence of gravity. Physics of Fluids, 2003, 15, 2728-2739.	1.6	7
17	Instability of a thin film flowing on a rotating horizontal or inclined plane. Physical Review E, 2002, 65, 026312.	0.8	12
18	Thermal Marangoni Convection of a Fluid Film Coating a Deformable Membrane. Journal of Colloid and Interface Science, 2001, 234, 106-116.	5.0	6

#	Article	IF	CITATIONS
19	Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder. Physics of Fluids, 2000, 12, 2198-2209.	1.6	26
20	Natural convection of a viscoelastic fluid with deformable free surface. Journal of Non-Newtonian Fluid Mechanics, 1999, 85, 257-271.	1.0	12
21	Kelvin–Helmholtz instability under horizontal rotation and magnetic fields. Journal of Plasma Physics, 1998, 59, 193-209.	0.7	1
22	Ultrafast dielectric relaxation response of polar liquids. Journal of Chemical Physics, 1997, 106, 2348-2354.	1.2	12
23	Nonlinear instability of a fluid layer flowing down a vertical wallunder imposed time-periodic perturbations. Physical Review E, 1997, 55, 374-380.	0.8	12
24	Azimuthal and streamwise disturbances in a fluid layer flowing down a rotating cylinder. Physics of Fluids, 1997, 9, 2899-2908.	1.6	9
25	Relaxation Phenomena in Viscoelastic Colloidal Suspensions with Internal Rotation. Journal of Colloid and Interface Science, 1996, 178, 69-79.	5.0	4
26	Rayleigh-Taylor instability of a two-fluid layer under a general rotation field and a horizontal magnetic field. Astrophysics and Space Science, 1996, 243, 291-313.	0.5	7
27	Stability of a Liquid Film Flowing down a Rotating Cylinder Subject to Azimuthal Disturbances. Journal De Physique II, 1996, 6, 1219-1227.	0.9	9
28	Rayleigh-Taylor instability of two superposed fluids under imposed horizontal and parallel rotation and magnetic fields. Fluid Dynamics Research, 1993, 12, 243-257.	0.6	8
29	Dielectric relaxation in polar and viscoelastic fluids with internal rotation. Journal of Chemical Physics, 1992, 96, 9102-9113.	1.2	11
30	Hydrodynamic stability of a fluid layer flowing down a rotating inclined plane. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1651-1665.	1.6	8
31	Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer. Journal of Non-Newtonian Fluid Mechanics, 1992, 45, 171-186.	1.0	3
32	Thermocapillary convection in a viscoelastic fluid layer under a horizontal temperature gradient. Journal of Applied Polymer Science, 1991, 49, 141-153.	1.3	7
33	Dielectric relaxation in polar and viscoelastic fluids. Journal of Chemical Physics, 1990, 93, 5147-5155.	1.2	13
34	Dielectric Behaviour of Viscous Fluids. Journal of Non-Equilibrium Thermodynamics, 1990, 15, .	2.4	3
35	Rayleigh–Taylor instability of a continuously stratified magnetofluid under a general rotation field. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1600-1602.	1.6	12
36	Rayleigh–Taylor instability of a continuously stratified fluid under a general rotation field. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1192-1199.	1.6	15