Luis Antonio Davalos Orozco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090245/publications.pdf

Version: 2024-02-01

LUIS ANTONIO DAVALOS

#	Article	IF	CITATIONS
1	The effect of the thermal conductivity and thickness of the wall on the nonlinear instability of a thin film flowing down an incline. International Journal of Non-Linear Mechanics, 2012, 47, 1-7.	1.4	89
2	Nonlinear instability of a thin film flowing down a smoothly deformed surface. Physics of Fluids, 2007, 19, .	1.6	56
3	Instabilities of Thin Films Flowing Down Flat and Smoothly Deformed Walls. Microgravity Science and Technology, 2008, 20, 225-229.	0.7	31
4	Convection in a horizontal fluid layer under an inclined temperature gradient. Physics of Fluids, 2011, 23, .	1.6	27
5	Three-dimensional instability of a liquid layer flowing down a heated vertical cylinder. Physics of Fluids, 2000, 12, 2198-2209.	1.6	26
6	Competition between stationary and oscillatory viscoelastic thermocapillary convection of a film coating a thick wall. International Journal of Thermal Sciences, 2015, 89, 164-173.	2.6	21
7	Sideband thermocapillary instability of a thin film flowing down the outside of a thick walled cylinder with finite thermal conductivity. International Journal of Non-Linear Mechanics, 2019, 109, 15-23.	1.4	16
8	Rayleigh–Taylor instability of a continuously stratified fluid under a general rotation field. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1192-1199.	1.6	15
9	Effect of thermal conductivity and thickness of the walls in the convection of a viscoelastic Maxwell fluid layer. International Journal of Heat and Mass Transfer, 2011, 54, 5020-5029.	2.5	15
10	Azimuthal instability modes in a viscoelastic liquid layer flowing down a heated cylinder. International Journal of Heat and Mass Transfer, 2015, 90, 15-25.	2.5	14
11	Dielectric relaxation in polar and viscoelastic fluids. Journal of Chemical Physics, 1990, 93, 5147-5155.	1.2	13
12	Rayleigh–Taylor instability of a continuously stratified magnetofluid under a general rotation field. Physics of Fluids A, Fluid Dynamics, 1989, 1, 1600-1602.	1.6	12
13	Ultrafast dielectric relaxation response of polar liquids. Journal of Chemical Physics, 1997, 106, 2348-2354.	1.2	12
14	Nonlinear instability of a fluid layer flowing down a vertical wallunder imposed time-periodic perturbations. Physical Review E, 1997, 55, 374-380.	0.8	12
15	Natural convection of a viscoelastic fluid with deformable free surface. Journal of Non-Newtonian Fluid Mechanics, 1999, 85, 257-271.	1.0	12
16	Instability of a thin film flowing on a rotating horizontal or inclined plane. Physical Review E, 2002, 65, 026312.	0.8	12
17	Dielectric relaxation in polar and viscoelastic fluids with internal rotation. Journal of Chemical Physics, 1992, 96, 9102-9113.	1.2	11
18	Non-linear instability of a thin film flowing down a cooled wavy thick wall of finite thermal conductivity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 962-967.	0.9	11

LUIS ANTONIO DAVALOS

#	Article	IF	CITATIONS
19	Nonlinear Sideband Thermocapillary Instability of a Thin Film Coating the Inside of a Thick Walled Cylinder with Finite Thermal Conductivity in the Absence of Gravity. Microgravity Science and Technology, 2020, 32, 105-117.	0.7	10
20	Azimuthal and streamwise disturbances in a fluid layer flowing down a rotating cylinder. Physics of Fluids, 1997, 9, 2899-2908.	1.6	9
21	Thermal Marangoni instability of a thin film flowing down a thick wall deformed in the backside. Physics of Fluids, 2016, 28, .	1.6	9
22	Stability of a Liquid Film Flowing down a Rotating Cylinder Subject to Azimuthal Disturbances. Journal De Physique II, 1996, 6, 1219-1227.	0.9	9
23	Hydrodynamic stability of a fluid layer flowing down a rotating inclined plane. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1651-1665.	1.6	8
24	Rayleigh-Taylor instability of two superposed fluids under imposed horizontal and parallel rotation and magnetic fields. Fluid Dynamics Research, 1993, 12, 243-257.	0.6	8
25	Rayleigh-Taylor instability of a two-fluid layer under a general rotation field and a horizontal magnetic field. Astrophysics and Space Science, 1996, 243, 291-313.	0.5	7
26	Instability of the interface between two inviscid fluids inside a rotating annulus in the absence of gravity. Physics of Fluids, 2003, 15, 2728-2739.	1.6	7
27	Thermocapillary convection in a viscoelastic fluid layer under a horizontal temperature gradient. Journal of Applied Polymer Science, 1991, 49, 141-153.	1.3	7
28	Thermal Marangoni Convection of a Fluid Film Coating a Deformable Membrane. Journal of Colloid and Interface Science, 2001, 234, 106-116.	5.0	6
29	Linear Three Dimensional Instability of Viscoelastic Fluid Layers Flowing Down Cylindrical Walls. Microgravity Science and Technology, 2008, 20, 161-164.	0.7	6
30	Convection in a horizontal fluid layer under an inclined temperature gradient for Prandtl numbers Pr>1. International Journal of Heat and Mass Transfer, 2014, 68, 444-455.	2.5	6
31	Convection in a horizontal fluid layer under an inclined temperature gradient with a negative vertical Rayleigh number. International Journal of Heat and Mass Transfer, 2015, 90, 1214-1220.	2.5	5
32	Relaxation Phenomena in Viscoelastic Colloidal Suspensions with Internal Rotation. Journal of Colloid and Interface Science, 1996, 178, 69-79.	5.0	4
33	Longwave Stability of Two Liquid Layers Coating Both Sides of a Thick Wall in the Absence of Gravity. Microgravity Science and Technology, 2018, 30, 209-228.	0.7	4
34	Dielectric Behaviour of Viscous Fluids. Journal of Non-Equilibrium Thermodynamics, 1990, 15, .	2.4	3
35	Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer. Journal of Non-Newtonian Fluid Mechanics, 1992, 45, 171-186.	1.0	3
36	Kelvin–Helmholtz instability under horizontal rotation and magnetic fields. Journal of Plasma Physics, 1998, 59, 193-209.	0.7	1