David G Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2090214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circulation Research, 2000, 87, 840-844.	2.0	3,329
2	Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. Journal of Experimental Medicine, 2007, 204, 2449-2460.	4.2	1,468
3	Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. Journal of Clinical Investigation, 2003, 111, 1201-1209.	3.9	1,284
4	Inflammation, Immunity, and Hypertension. Hypertension, 2011, 57, 132-140.	1.3	718
5	Endothelial Regulation of Vasomotion in ApoE-Deficient Mice. Circulation, 2001, 103, 1282-1288.	1.6	683
6	Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. Journal of Clinical Investigation, 2003, 111, 1201-1209.	3.9	678
7	Interleukin 17 Promotes Angiotensin II–Induced Hypertension and Vascular Dysfunction. Hypertension, 2010, 55, 500-507.	1.3	662
8	Role of Superoxide in Angiotensin Il–Induced but Not Catecholamine-Induced Hypertension. Circulation, 1997, 95, 588-593.	1.6	647
9	Therapeutic Targeting of Mitochondrial Superoxide in Hypertension. Circulation Research, 2010, 107, 106-116.	2.0	639
10	The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends in Pharmacological Sciences, 2003, 24, 471-478.	4.0	627
11	Molecular Mechanisms of Angiotensin II–Mediated Mitochondrial Dysfunction. Circulation Research, 2008, 102, 488-496.	2.0	616
12	Role of NADH/NADPH Oxidase–Derived H ₂ O ₂ in Angiotensin II–Induced Vascular Hypertrophy. Hypertension, 1998, 32, 488-495.	1.3	592
13	Inflammation, Immunity, and Hypertensive End-Organ Damage. Circulation Research, 2015, 116, 1022-1033.	2.0	554
14	Role of p47 phox in Vascular Oxidative Stress and Hypertension Caused by Angiotensin II. Hypertension, 2002, 40, 511-515.	1.3	533
15	Measurement of Reactive Oxygen Species in Cardiovascular Studies. Hypertension, 2007, 49, 717-727.	1.3	457
16	Diabetes Mellitus Enhances Vascular Matrix Metalloproteinase Activity. Circulation Research, 2001, 88, 1291-1298.	2.0	438
17	Expression of Multiple Isoforms of Nitric Oxide Synthase in Normal and Atherosclerotic Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2479-2488.	1.1	426
18	p22phox mRNA Expression and NADPH Oxidase Activity Are Increased in Aortas From Hypertensive Rats. Circulation Research, 1997, 80, 45-51.	2.0	423

#	Article	IF	CITATIONS
19	The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. Journal of Experimental Medicine, 2016, 213, 337-354.	4.2	403
20	DC isoketal-modified proteins activate T cells and promote hypertension. Journal of Clinical Investigation, 2014, 124, 4642-4656.	3.9	400
21	Transcriptional and Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase Expression by Hydrogen Peroxide. Circulation Research, 2000, 86, 347-354.	2.0	383
22	Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. Journal of Clinical Investigation, 2013, 123, 2803-2815.	3.9	338
23	Redox Mechanisms in Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 274-278.	1.1	309
24	The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Research, 2017, 113, 1009-1023.	1.8	302
25	The immunology of hypertension. Journal of Experimental Medicine, 2018, 215, 21-33.	4.2	286
26	Oxidative Stress and Hypertension. Medical Clinics of North America, 2009, 93, 621-635.	1.1	285
27	Central and Peripheral Mechanisms of T-Lymphocyte Activation and Vascular Inflammation Produced by Angiotensin Il–Induced Hypertension. Circulation Research, 2010, 107, 263-270.	2.0	280
28	Calcium-Dependent NOX5 Nicotinamide Adenine Dinucleotide Phosphate Oxidase Contributes to Vascular Oxidative Stress in Human Coronary Artery Disease. Journal of the American College of Cardiology, 2008, 52, 1803-1809.	1.2	249
29	Inhibition and Genetic Ablation of the B7/CD28 T-Cell Costimulation Axis Prevents Experimental Hypertension. Circulation, 2010, 122, 2529-2537.	1.6	249
30	Nox2-Induced Production of Mitochondrial Superoxide in Angiotensin II-Mediated Endothelial Oxidative Stress and Hypertension. Antioxidants and Redox Signaling, 2014, 20, 281-294.	2.5	248
31	Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor–Associated Hypertension and Vascular Disease. Hypertension, 2018, 71, e1-e8.	1.3	224
32	Inflammation and Mechanical Stretch Promote Aortic Stiffening in Hypertension Through Activation of p38 Mitogen-Activated Protein Kinase. Circulation Research, 2014, 114, 616-625.	2.0	200
33	Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Circulation Research, 2017, 121, 564-574.	2.0	195
34	Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circulation Research, 2020, 126, 439-452.	2.0	195
35	Inflammation in Hypertension. Canadian Journal of Cardiology, 2020, 36, 635-647.	0.8	194
36	Activation of Human T Cells in Hypertension. Hypertension, 2016, 68, 123-132.	1.3	191

#	Article	IF	CITATIONS
37	Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension. Circulation Research, 2015, 117, 547-557.	2.0	189
38	Oligoclonal CD8 ⁺ T Cells Play a Critical Role in the Development of Hypertension. Hypertension, 2014, 64, 1108-1115.	1.3	185
39	Role of chemokine RANTES in the regulation of perivascular inflammation, Tâ€cell accumulation, and vascular dysfunction in hypertension. FASEB Journal, 2016, 30, 1987-1999.	0.2	185
40	Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension. Cell Reports, 2017, 21, 1009-1020.	2.9	185
41	Akt-Dependent Phosphorylation of Serine 1179 and Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase 1/2 Cooperatively Mediate Activation of the Endothelial Nitric-Oxide Synthase by Hydrogen Peroxide. Molecular Pharmacology, 2003, 63, 325-331.	1.0	178
42	Immune activation caused by vascular oxidation promotes fibrosis and hypertension. Journal of Clinical Investigation, 2015, 126, 50-67.	3.9	170
43	Endothelial Function and Oxidant Stress. Clinical Cardiology, 1997, 20, II-11.	0.7	168
44	Molecular Regulation of the Bovine Endothelial Cell Nitric Oxide Synthase by Transforming Growth Factor–β ₁ . Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1255-1261.	1.1	168
45	Renal Transporter Activation During Angiotensin-II Hypertension is Blunted in Interferon-γ ^{â^'/â^'} and Interleukin-17A ^{â^'/â^'} Mice. Hypertension, 2015, 65, 569-576.	1.3	166
46	NAD(P)H Oxidase-derived Hydrogen Peroxide Mediates Endothelial Nitric Oxide Production in Response to Angiotensin II. Journal of Biological Chemistry, 2002, 277, 48311-48317.	1.6	164
47	Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovascular Research, 2021, 117, 29-42.	1.8	164
48	Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H673-H679.	1.5	157
49	Immune Mechanisms in Arterial Hypertension. Journal of the American Society of Nephrology: JASN, 2016, 27, 677-686.	3.0	157
50	Induction of Hypertension and Peripheral Inflammation by Reduction of Extracellular Superoxide Dismutase in the Central Nervous System. Hypertension, 2010, 55, 277-283.	1.3	154
51	High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. Journal of Clinical Investigation, 2017, 127, 1944-1959.	3.9	153
52	Increased Superoxide in Heart Failure. Circulation, 1999, 100, 216-218.	1.6	152
53	Vascular Inflammatory Cells in Hypertension. Frontiers in Physiology, 2012, 3, 128.	1.3	146
54	Induction of Endothelial NO Synthase by Hydrogen Peroxide via a Ca ²⁺ /Calmodulin-Dependent Protein Kinase II/Janus Kinase 2–Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1571-1576.	1.1	145

#	Article	IF	CITATIONS
55	Dual Role of Reactive Oxygen Species in Vascular Growth. Circulation Research, 1999, 85, 562-563.	2.0	138
56	Role of the adaptive immune system in hypertension. Current Opinion in Pharmacology, 2010, 10, 203-207.	1.7	137
57	Central Artery Stiffness in Hypertension and Aging. Circulation Research, 2016, 118, 379-381.	2.0	137
58	Dysfunctional Regulation of Endothelial Nitric Oxide Synthase (eNOS) Expression in Response to Exercise in Mice Lacking One eNOS Gene. Circulation, 2001, 103, 2839-2844.	1.6	132
59	CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circulation Research, 2016, 118, 1233-1243.	2.0	128
60	Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. Journal of Clinical Investigation, 2015, 125, 1189-1202.	3.9	128
61	Oxidative Stress and Hypertensive Diseases. Medical Clinics of North America, 2017, 101, 169-193.	1.1	122
62	Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovascular Research, 2018, 114, 1547-1563.	1.8	121
63	Bone Morphogenic Protein-4 Induces Hypertension in Mice. Circulation, 2006, 113, 2818-2825.	1.6	117
64	Role of Vascular Oxidative Stress in Obesity and Metabolic Syndrome. Diabetes, 2014, 63, 2344-2355.	0.3	116
65	Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H639-H646.	1.5	116
66	The Role of the Multidrug Resistance Protein-1 in Modulation of Endothelial Cell Oxidative Stress. Circulation Research, 2005, 97, 637-644.	2.0	114
67	Pathophysiology of Hypertension. Circulation Research, 2021, 128, 847-863.	2.0	112
68	Integrative network analysis reveals molecular mechanisms of blood pressure regulation. Molecular Systems Biology, 2015, 11, 799.	3.2	102
69	Superoxide Production, Risk Factors, and Endothelium-Dependent Relaxations in Human Internal Mammary Arteries. Circulation, 1999, 99, 53-59.	1.6	98
70	Oxidative stress and hypertension. Journal of the American Society of Hypertension, 2007, 1, 30-44.	2.3	97
71	Oxidant Stress as a Marker for Cardiovascular Events. Circulation, 2001, 104, 2638-2640.	1.6	97
72	Evidence for a Causal Role of the Renin-Angiotensin System in Nitrate Tolerance. Circulation, 1999, 99, 3181-3187.	1.6	96

#	Article	IF	CITATIONS
73	Role of the NADPH Oxidases in the Subfornical Organ in Angiotensin II–Induced Hypertension. Hypertension, 2013, 61, 382-387.	1.3	95
74	High Salt Activates CD11c ⁺ Antigen-Presenting Cells via SGK (Serum Glucocorticoid) Tj ETQq0 C 555-563.	0 rgBT /Ove 1.3	erlock 10 Tf 50 94
75	Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension, 2016, 67, 890-896.	1.3	93
76	Oxidative stress and vascular damage in hypertension. Coronary Artery Disease, 2001, 12, 455-461.	0.3	92
77	Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H37-H42.	1.5	90
78	Role of the Multidrug Resistance Protein-1 in Hypertension and Vascular Dysfunction Caused by Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 762-768.	1.1	86
79	A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight, 2017, 2, .	2.3	86
80	T Lymphocytes and Vascular Inflammation Contribute to Stress-Dependent Hypertension. Biological Psychiatry, 2012, 71, 774-782.	0.7	78
81	Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H7-H12.	1.5	77
82	Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. Journal of Clinical Investigation, 2017, 127, 2725-2738.	3.9	75
83	The Mosaic Theory revisited: common molecular mechanisms coordinating diverse organ and cellular events in hypertension. Journal of the American Society of Hypertension, 2013, 7, 68-74.	2.3	74
84	Myeloid Suppressor Cells Accumulate and Regulate Blood Pressure in Hypertension. Circulation Research, 2015, 117, 858-869.	2.0	73
85	Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase During Cell Growth. Circulation Research, 1999, 85, 588-595.	2.0	72
86	Is hypertension an immunologic disease?. Current Cardiology Reports, 2008, 10, 464-469.	1.3	72
87	Effects of Interleukin-1β Inhibition on Blood Pressure, Incident Hypertension, and Residual Inflammatory Risk. Hypertension, 2020, 75, 477-482.	1.3	69
88	Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension. Hypertension, 2016, 67, 1218-1227.	1.3	65
89	Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension, 2016, 67, 461-468.	1.3	65
90	Effects of shear on endothelial cell calcium in the presence and absence of ATP. FASEB Journal, 1995, 9, 968-973.	0.2	61

#	Article	IF	CITATIONS
91	Evidence for a role of oxygen-derived free radicals and protein kinase C in nitrate tolerance. Journal of Molecular Medicine, 1997, 75, 891-900.	1.7	61
92	Clucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight, 2018, 3, .	2.3	60
93	Endothelial control of vasomotion and nitric oxide production. Cardiology Clinics, 2003, 21, 289-302.	0.9	58
94	Tetrahydrobiopterin Deficiency and Nitric Oxide Synthase Uncoupling Contribute to Atherosclerosis Induced by Disturbed Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1547-1554.	1.1	50
95	Out, damned dot: studies of the NAD(P)H oxidase in atherosclerosis. Journal of Clinical Investigation, 2001, 108, 1423-1424.	3.9	44
96	Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovascular Research, 2021, 117, 1358-1371.	1.8	41
97	BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circulation Research, 2016, 119, 434-449.	2.0	40
98	Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L868-L876.	1.3	38
99	Reactive oxygen species and the control of vasomotor tone. Current Hypertension Reports, 1999, 1, 102-108.	1.5	37
100	Regulation of Endothelial Cell Tetrahydrobiopterin. Advances in Pharmacology, 2010, 60, 107-132.	1.2	35
101	Th1â€ŧype immune responses to <i>Porphyromonas gingivalis</i> antigens exacerbate angiotensin llâ€dependent hypertension and vascular dysfunction. British Journal of Pharmacology, 2019, 176, 1922-1931.	2.7	35
102	Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS-/- mice. BMC Nephrology, 2016, 17, 24.	0.8	33
103	Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell Activation in the Heart and Promote Cardiac Dysfunction. Circulation, 2021, 143, 1242-1255.	1.6	33
104	Association of T Cell and Macrophage Activation with Arterial Vascular Health in HIV. AIDS Research and Human Retroviruses, 2017, 33, 181-186.	0.5	32
105	Memories that last in hypertension. American Journal of Physiology - Renal Physiology, 2015, 308, F1197-F1199.	1.3	31
106	Stressâ€dependent hypertension and the role of T lymphocytes. Experimental Physiology, 2012, 97, 1161-1167.	0.9	30
107	A call to action for new global approaches to cardiovascular disease drug solutions. European Heart Journal, 2021, 42, 1464-1475.	1.0	29
108	Role of Increased Guanosine Triphosphate Cyclohydrolase-1 Expression and Tetrahydrobiopterin Levels upon T Cell Activation. Journal of Biological Chemistry, 2011, 286, 13846-13851.	1.6	27

#	Article	IF	CITATIONS
109	Phage-Display-Guided Nanocarrier Targeting to Atheroprone Vasculature. ACS Nano, 2015, 9, 4435-4446.	7.3	27
110	Reactive species balance via GTP cyclohydrolase I regulates glioblastoma growth and tumor initiating cell maintenance. Neuro-Oncology, 2018, 20, 1055-1067.	0.6	27
111	Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. , 2020, 205, 107418.		27
112	Tissue sodium stores in peritoneal dialysis and hemodialysis patients determined by sodium-23 magnetic resonance imaging. Nephrology Dialysis Transplantation, 2021, 36, 1307-1317.	0.4	27
113	Do high-salt microenvironments drive hypertensive inflammation?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R1-R4.	0.9	25
114	Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovascular Research, 2021, 117, 2589-2609.	1.8	25
115	Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension. Hypertension, 2020, 75, 902-917.	1.3	24
116	Sympathetic Enhancement of Memory T-Cell Homing and Hypertension Sensitization. Circulation Research, 2020, 126, 708-721.	2.0	23
117	Innate immunity and clinical hypertension. Journal of Human Hypertension, 2022, 36, 503-509.	1.0	20
118	Growth Arrest Specific-6 and Axl Coordinate Inflammation and Hypertension. Circulation Research, 2021, 129, 975-991.	2.0	19
119	A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation, 2021, 144, 159-169.	1.6	18
120	Mitochondrial Isolevuglandins Contribute to Vascular Oxidative Stress and Mitochondria-Targeted Scavenger of Isolevuglandins Reduces Mitochondrial Dysfunction and Hypertension. Hypertension, 2020, 76, 1980-1991.	1.3	17
121	Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused by Hypertension. JACC Basic To Translational Science, 2020, 5, 602-615.	1.9	17
122	Modulation of Endothelial Cell Nitric Oxide Synthase Expression. Japanese Circulation Journal, 1996, 60, 815-821.	1.0	15
123	Central EP3 (E Prostanoid 3) Receptors Mediate Salt-Sensitive Hypertension and Immune Activation. Hypertension, 2019, 74, 1507-1515.	1.3	15
124	Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight, 2022, 7, .	2.3	15
125	Solving Baroreceptor Mystery: Role of PIEZO Ion Channels. Journal of the American Society of Nephrology: JASN, 2019, 30, 911-913.	3.0	14
126	From Rags to Riches. Hypertension, 2020, 75, 930-934.	1.3	13

#	Article	IF	CITATIONS
127	Can vitamin E prevent cardiovascular events and cancer?. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 510-511.	3.3	12
128	Markers or Makers. Hypertension, 2019, 73, 767-769.	1.3	12
129	NOX5 as a therapeutic target in cerebral ischemic injury. Journal of Clinical Investigation, 2019, 129, 1530-1532.	3.9	12
130	GTP Cyclohydrolase I Gene Polymorphisms Are Associated with Endothelial Dysfunction and Oxidative Stress in Patients with Type 2 Diabetes Mellitus. PLoS ONE, 2014, 9, e108587.	1.1	11
131	Is Hypertension a Bone Marrow Disease?. Circulation, 2016, 134, 1369-1372.	1.6	11
132	Oxidative stress induces BH4 deficiency in male, but not female, SHR. Bioscience Reports, 2018, 38, .	1.1	11
133	Breast cancer chemotherapy induces vascular dysfunction and hypertension through a NOX4-dependent mechanism. Journal of Clinical Investigation, 2022, 132, .	3.9	11
134	Basic science. Journal of the American Society of Hypertension, 2014, 8, 601-603.	2.3	10
135	A New Role of Mister (MR) T in Hypertension. Circulation Research, 2017, 120, 1527-1529.	2.0	10
136	What matters in Cardiovascular Research? Scientific discovery driving clinical delivery. Cardiovascular Research, 2018, 114, 1565-1568.	1.8	10
137	Anticytomegalovirus CD4 + T Cells Are Associated With Subclinical Atherosclerosis in Persons With HIV. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1459-1473.	1.1	7
138	Tissue Sodium in Patients With Early Stage Hypertension: A Randomized Controlled Trial. Journal of the American Heart Association, 2022, 11, e022723.	1.6	7
139	IsoLGs (Isolevuglandins) Drive Neutrophil Migration in Hypertension and Are Essential for the Formation of Neutrophil Extracellular Traps. Hypertension, 2022, 79, 1644-1655.	1.3	7
140	Enhanced Hype. American Journal of Cardiology, 2008, 102, 368-369.	0.7	5
141	Hypertension and osteoporosis: Common pathophysiological mechanisms. Medicine in Novel Technology and Devices, 2020, 8, 100047.	0.9	5
142	A New Look At the Mosaic Theory of Hypertension. Canadian Journal of Cardiology, 2020, 36, 591-592.	0.8	5
143	IL-17A is associated with flow-mediated dilation and IL-4 with carotid plaque in persons with HIV. Aids, 2022, Publish Ahead of Print, .	1.0	5
144	Nocturnal noise knocks NOS by Nox: mechanisms underlying cardiovascular dysfunction in response to noise pollution. European Heart Journal, 2018, 39, 3540-3542.	1.0	4

#	Article	IF	CITATIONS
145	E-vaporating benefits of e-vaping. European Heart Journal, 2020, 41, 2484-2486.	1.0	4
146	Scientists on the Spot: Inflammation and translational research—what have we learned from the CIRT trial?. Cardiovascular Research, 2019, 115, e44-e45.	1.8	3
147	New insight sheds light as to how nitrite might reduce blood pressure height: is this alright?. Cardiovascular Research, 2020, 116, 1-3.	1.8	3
148	Peer-Based Anatomy Tutoring for First-Year Medical Students: an Analysis of Peer-Tutoring from the Tutors' Perspective. Medical Science Educator, 2017, 27, 57-61.	0.7	2
149	A T-Cell Small RNA With miRacle Effects on Aortic Stiffening. Circulation Research, 2020, 126, 1004-1006.	2.0	2
150	Rapid and Specific Measurements of Superoxide Using Fluorescence Spectroscopy. FASEB Journal, 2012, 26, 578.3.	0.2	2
151	Mitochondrial superoxide in proâ€hypertensive Tâ€cell activation. FASEB Journal, 2013, 27, 906.8.	0.2	1
152	CD70 Modulates the Role of eNOS In Endothelial Cells. FASEB Journal, 2018, 32, 845.7.	0.2	1
153	A Message to the Hypertension Community Regarding the Ukraine Crisis. Hypertension, 2022, , .	1.3	1
154	The nerve of the spleen! Causing hypertension by placental growth factor. Cardiovascular Research, 2018, 114, 356-357.	1.8	0
155	Ronald G. Victor. Hypertension, 2019, 73, 13-14.	1.3	0
156	Deacetylation mimetic of mitochondrial cyclophilin D CypDâ€K166R mutant mice are protected from inflammation, oxidative stress, endothelial dysfunction and hypertension. FASEB Journal, 2021, 35, .	0.2	0
157	Endothelial deficiency of sepiapterin reductase in hypertension and its impact on sepiapterin as an eNOSâ€recoupling agent. FASEB Journal, 2006, 20, A652.	0.2	0
158	Importance of the chemokine RANTES in the development of angiotensin IIâ€induced hypertension and vascular dysfunction. FASEB Journal, 2008, 22, 1210.8.	0.2	0
159	Inhibition of T cell Costimulation Prevents the Development of Hypertension. FASEB Journal, 2010, 24, 983.1.	0.2	0
160	Monitoring GTPCHâ€1 Interaction with GFRP Using Timeâ€Resolved Fluorescence Resonance Energy Transfer. FASEB Journal, 2010, 24, 871.3.	0.2	0
161	Interleukin 17 promotes atherosclerosis and protects against aneurysmal rupture. FASEB Journal, 2010, 24, 589.8.	0.2	0
162	Oral Tetrahydrobiopterin Treatment Prevents Accelerated Atherosclerosis Caused by Oscillatory Shear Stress. FASEB Journal, 2010, 24, lb565.	0.2	0

#	Article	IF	CITATIONS
163	Superoxide production in the medullary thick ascending limb modulates blood pressure. FASEB Journal, 2010, 24, 792.5.	0.2	0
164	Stimulation of GTP Cyclohydrolase I by Phosphorylation Upon T Cell Activation. FASEB Journal, 2010, 24, lb187.	0.2	0
165	Alterations of T cell receptor Vβ chain usage in angiotensin llinduced hypertension. FASEB Journal, 2012, 26, 879.3.	0.2	0
166	Creating of GTP Cyclohydrolaseâ€l Knock in Mouse. FASEB Journal, 2012, 26, lb642.	0.2	0
167	Thick Ascending Limbâ€Specific NOS1 Knockout Reduces Urinary Osmolality in Type 1 Diabetes. FASEB Journal, 2013, 27, 910.12.	0.2	0
168	Blunted hypertensive response to Ang II infusion in IFNâ€g knockout mice: molecular mechanisms. FASEB Journal, 2013, 27, 906.12.	0.2	0
169	The role of central memory CD8 T cells in the kidney and the role of these cells in genesis of hypertension. FASEB Journal, 2013, 27, 905.7.	0.2	0
170	Lymphocyteâ€specific adaptor protein, LNK, inhibits angiotensin IIâ€induced hypertension and inflammation. FASEB Journal, 2013, 27, 708.15.	0.2	0
171	Renal denervation prevents renal T cell activation in mice during angiotensin IIâ€induced hypertension. FASEB Journal, 2013, 27, lb696.	0.2	0
172	Dendritic Cell Amiloride Sensitive Channels Mediate Sodium-induced Inflammation and Hypertension. SSRN Electronic Journal, 0, , .	0.4	0
173	The Role of Salt, Serum Glucocorticoid Kinase 1, and NADPH Oxidase in Salt‣ensitive Hypertension. FASEB Journal, 2018, 32, 718.18.	0.2	0
174	High Salt Promotes Human Monocytes Activation In Vitro and In Vivo. FASEB Journal, 2018, 32, 718.17.	0.2	0
175	Loss of Salt Sensing Kinase, SGK1, in T cells abrogates Memory Cell Formation, Hypertension and Endâ€Organ Damage. FASEB Journal, 2018, 32, 870.1.	0.2	0
176	Sympathetic Innervation Promotes Bone Marrow Homing of Specific CD8 + Effector Memory T Cells in Hypertension. FASEB Journal, 2018, 32, 918.1.	0.2	0
177	Mitochondrial Deacetylase Sirt3 as a New Target in Cardiovascular Diseases. FASEB Journal, 2019, 33, 693.1.	0.2	0
178	Serum Glucocorticoid Kinase 1 (SGK1) Expression in Dendritic Cells Contributes to Saltâ€Induced Hypertension in Mice. FASEB Journal, 2019, 33, 861.1.	0.2	0