Sanchari Shome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089999/publications.pdf

Version: 2024-02-01

48 papers

2,744 citations

430874 18 h-index 254184 43 g-index

49 all docs 49 docs citations

49 times ranked 3907 citing authors

#	Article	IF	Citations
1	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	13.7	643
2	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72-77.	27.8	471
3	Smallâ€Bandgap Polymer Solar Cells with Unprecedented Shortâ€Circuit Current Density and High Fill Factor. Advanced Materials, 2015, 27, 3318-3324.	21.0	294
4	Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6, 7348.	12.8	281
5	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	21.0	213
6	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	19.5	147
7	A universal processing additive for high-performance polymer solar cells. RSC Advances, 2017, 7, 7476-7482.	3.6	58
8	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	14.6	56
9	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â^¼8%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	10.3	49
10	Photocurrent Extraction Efficiency near Unity in a Thick Polymer Bulk Heterojunction. Advanced Functional Materials, 2016, 26, 3324-3330.	14.9	48
11	Microwave-Epoxide-Assisted Hydrothermal Synthesis of the CuO/ZnO Heterojunction: a Highly Versatile Route to Develop H ₂ S Gas Sensors. ACS Omega, 2020, 5, 8587-8595.	3.5	36
12	Luminance efficiency roll-off mechanism in CsPbBr _{3â°'x} Cl _x mixed-halide perovskite quantum dot blue light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 3608-3619.	5 . 5	32
13	Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices. Journal of Colloid and Interface Science, 2017, 505, 79-86.	9.4	29
14	Improved Eco-Friendly Photovoltaics Based on Stabilized AgBiS ₂ Nanocrystal Inks. Chemistry of Materials, 2020, 32, 10007-10014.	6.7	28
15	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	3.9	26
16	Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device. Nanomaterials, 2020, 10, 46.	4.1	24
17	Recent progress of ultra-narrow-bandgap polymer donors for NIR-absorbing organic solar cells. Nanoscale Advances, 2021, 3, 4306-4320.	4.6	22
18	Improved size distribution of <scp> AgBiS ₂ </scp> colloidal nanocrystals by optimized synthetic route enhances photovoltaic performance. International Journal of Energy Research, 2020, 44, 11006-11014.	4.5	21

#	Article	IF	Citations
19	Polymerizable Supramolecular Approach to Highly Conductive PEDOT:PSS Patterns. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19231-19237.	8.0	19
20	Hole transport layer based on conjugated polyelectrolytes for polymer solar cells. Journal of Colloid and Interface Science, 2018, 518, 21-26.	9.4	18
21	<i>In situ</i> cadmium surface passivation of perovskite nanocrystals for blue LEDs. Journal of Materials Chemistry A, 2021, 9, 26750-26757.	10.3	18
22	Guanidinium-Pseudohalide Perovskite Interfaces Enable Surface Reconstruction of Colloidal Quantum Dots for Efficient and Stable Photovoltaics. ACS Nano, 2022, 16, 1649-1660.	14.6	18
23	Solvent Engineering of Colloidal Quantum Dot Inks for Scalable Fabrication of Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36992-37003.	8.0	17
24	Solution-Processable transparent conducting electrodes via the self-assembly of silver nanowires for organic photovoltaic devices. Journal of Colloid and Interface Science, 2018, 512, 158-164.	9.4	16
25	Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells. Journal of Materials Chemistry A, 2020, 8, 1326-1334.	10.3	15
26	A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue perovskite light emitting diodes. Journal of Materials Chemistry A, 2022, 10, 13928-13935.	10.3	15
27	Design of Nonfused Nonfullerene Acceptors Based on Pyrido- or Benzothiadiazole Cores for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 2202-2210.	5.1	14
28	Chargeâ€Selective, Narrowâ€Gap Indium Arsenide Quantum Dot Layer for Highly Stable and Efficient Organic Photovoltaics. Advanced Energy Materials, 2022, 12, .	19.5	14
29	Impact of Chalcogenophenes on Donor-Acceptor Copolymers for Bulk Heterojunction Solar Cells. Macromolecular Research, 2020, 28, 1111-1115.	2.4	11
30	Hybrid Surface Passivation for Retrieving Charge Collection Efficiency of Colloidal Quantum Dot Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43576-43585.	8.0	11
31	Interdigitated Hierarchical Integration of an Efficient Lateral Perovskite Singleâ€Crystal Solar Cell. ChemSusChem, 2020, 13, 1882-1889.	6.8	10
32	Improved photovoltaic performance of quinoxaline-based polymers by systematic modulation of electron-withdrawing substituents. Journal of Materials Chemistry C, 2022, 10, 10338-10346.	5.5	10
33	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
34	Twisted Linker Effect on Naphthalene Diimideâ€Based Dimer Electron Acceptors for Nonâ€fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, e1800108.	3.9	8
35	Hierarchical novel <scp> NiCo ₂ O ₄ </scp> / <scp> BiVO ₄ </scp> hybrid heterostructure as an advanced anode material for rechargeable lithium ion battery. International Journal of Energy Research, 2020, 44, 12126-12135.	4.5	8
36	Morphological and Optical Engineering for High-Performance Polymer Solar Cells. ACS Applied Materials & Description (2019), 11, 4705-4711.	8.0	6

3

#	Article	IF	CITATIONS
37	Effect of electron-withdrawing fluorine and cyano substituents on photovoltaic properties of two-dimensional quinoxaline-based polymers. Scientific Reports, 2021, 11, 24381.	3.3	6
38	New Fused Pyrrolopyridineâ€Based Copolymers for Organic Solar Cell. Macromolecular Rapid Communications, 2019, 40, 1800784.	3.9	5
39	Simple-Structured Low-Cost Dopant-Free Hole-Transporting Polymers for High-Stability CsPbl ₂ Br Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13400-13409.	8.0	5
40	Effect of Electron-Withdrawing Chlorine Substituent on Morphological and Photovoltaic Properties of All Chlorinated D–A-Type Quinoxaline-Based Polymers. ACS Applied Materials & Diterfaces, 2022, 14, 19785-19794.	8.0	4
41	Addendum: Camic, B. T. et al. Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device. Nanomaterials 2020, 10, 46. Nanomaterials, 2020, 10, 497.	4.1	3
42	Microwave-Assisted Synthesis of Non-Fullerene Acceptors and Their Photovoltaic Studies for High-Performance Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9816-9826.	5.1	3
43	Fabrication of Conjugated Porous Polymer Catalysts for Oxygen Reduction Reactions: A Bottom-Up Approach. Catalysts, 2020, 10, 1224.	3.5	1
44	New 3, 8â€difluoro indoloindoleâ€based copolymers for organic solar cell. International Journal of Energy Research, 2021, 45, 7806-7813.	4.5	1
45	Influence of an Amide-Functionalized Monomeric Unit on the Morphology and Electronic Properties of Non-Fullerene Polymer Solar Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 0 , 1 .	4.9	1
46	Macromol. Rapid Commun. 14/2018. Macromolecular Rapid Communications, 2018, 39, 1870034.	3.9	0
47	Field Emission and Electrical Properties of Perovskite. Journal of Nanoscience and Nanotechnology, 2018, 18, 1327-1330.	0.9	0
48	Synthesis of Alkoxyaceneâ€Based Random Copolymers and Binary Solvent Additive for High Efficiency Organic Photovoltaics. Macromolecular Chemistry and Physics, 2019, 220, 1900409.	2.2	0