
Qingqing Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089540/publications.pdf Version: 2024-02-01

Οινεοινς Νι

#	Article	IF	CITATIONS
1	Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Composites Science and Technology, 2007, 67, 2973-2980.	7.8	266
2	Mechanical and shape memory behavior of composites with shape memory polymer. Composites Part A: Applied Science and Manufacturing, 2004, 35, 1065-1073.	7.6	257
3	Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Composite Structures, 2007, 81, 176-184.	5.8	225
4	From Cellulose Nanospheres, Nanorods to Nanofibers: Various Aspect Ratio Induced Nucleation/Reinforcing Effects on Polylactic Acid for Robust-Barrier Food Packaging. ACS Applied Materials & Interfaces, 2017, 9, 43920-43938.	8.0	170
5	Facile Synthesis of BaTiO ₃ Nanotubes and Their Microwave Absorption Properties. ACS Applied Materials & Interfaces, 2012, 4, 2101-2106.	8.0	164
6	High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption–Flocculants: Paving Way from Nanoscale to Macroscale. ACS Applied Materials & Interfaces, 2018, 10, 20755-20766.	8.0	131
7	Facile Gel-Based Morphological Control of Ag/ <i>g</i> -C ₃ N ₄ Porous Nanofibers for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2017, 5, 10633-10639.	6.7	122
8	Materials for lithium recovery from salt lake brine. Journal of Materials Science, 2021, 56, 16-63.	3.7	122
9	Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors. ACS Applied Materials & Interfaces, 2019, 11, 24435-24446.	8.0	120
10	"Bridge―graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation. Desalination, 2020, 488, 114522.	8.2	84
11	Self-Repairing, Large Linear Working Range Shape Memory Carbon Nanotubes/Ethylene Vinyl Acetate Fiber Strain Sensor for Human Movement Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 42179-42192.	8.0	75
12	Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Materials Letters, 2019, 241, 168-171.	2.6	70
13	In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids. Carbohydrate Polymers, 2017, 176, 38-49.	10.2	58
14	Preparation and characterization of water-borne epoxy shape memory composites containing silica. Composites Part A: Applied Science and Manufacturing, 2015, 72, 1-10.	7.6	57
15	One-step preparation of water-soluble single-walled carbon nanotubes. Applied Surface Science, 2009, 255, 7095-7099.	6.1	50
16	Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Composites Science and Technology, 2015, 120, 17-25.	7.8	47
17	One-dimensional carbon nanotube@barium titanate@polyaniline multiheterostructures for microwave absorbing application. Nanoscale Research Letters, 2015, 10, 174.	5.7	46
18	A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering. Journal of Materials Science, 2018, 53, 4734-4744.	3.7	45

Qingqing Ni

#	Article	IF	CITATIONS
19	Damage detection of CFRP composites by electromagnetic wave nondestructive testing (EMW-NDT). Composites Science and Technology, 2021, 210, 108839.	7.8	37
20	Electroactive shape memory composites with TiO 2 whiskers for switching an electrical circuit. Materials and Design, 2018, 143, 196-203.	7.0	34
21	Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Composites Science and Technology, 2021, 203, 108616.	7.8	34
22	A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites. Composite Structures, 2020, 238, 111954.	5.8	30
23	Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2017, 105, 1132-1137.	4.0	24
24	Thermodynamic coupling behavior and energy harvesting of vapor grown carbon fiber/graphene oxide/epoxy shape memory composites. Composites Science and Technology, 2021, 203, 108583.	7.8	23
25	Mechanical and shape memory performance of shape memory polyurethane-based aligned nanofibers. Polymer Testing, 2020, 91, 106778.	4.8	21
26	Electrospun sandwich configuration nanofibers as transparent membranes for skin care drug delivery systems. Journal of Materials Science, 2018, 53, 10617-10626.	3.7	19
27	Smart composites of piezoelectric particles and shape memory polymers for actuation and nanopositioning. Composites Science and Technology, 2018, 163, 123-132.	7.8	19
28	Two-way reversible shape memory polymer: Synthesis and characterization of benzoyl peroxide-crosslinked poly(ethylene-co-vinyl acetate). Materials Letters, 2020, 258, 126762.	2.6	17
29	Nanofiber-based wearable energy harvesters in different body motions. Composites Science and Technology, 2020, 200, 108478.	7.8	17
30	Flexible energy harvester based on aligned PZT/SMPU nanofibers and shape memory effect for curved sensors. Composites Part B: Engineering, 2020, 197, 108169.	12.0	17
31	Fabrication of gradient vapor grown carbon fiber based polyurethane foam for shape memory driven microwave shielding. RSC Advances, 2019, 9, 9401-9409.	3.6	16
32	Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for Monitoring Vital Signs. Materials Today Communications, 2020, 24, 100909.	1.9	16
33	Multi-layer graphene oxide coated shape memory polyurethane for adjustable smart switches. Composites Science and Technology, 2019, 172, 108-116.	7.8	15
34	Study on material performances of lead zirconate titanate/shape memory polyurethane composites combining shape memory and piezoelectric effect. Composites Part A: Applied Science and Manufacturing, 2018, 110, 183-189.	7.6	14
35	MWCNTs-COOK-assisted high positively charged composite membrane: Accelerating Li+ enrichment and Mg2+ removal. Composites Part B: Engineering, 2021, 212, 108686.	12.0	14
36	Electrically induced soft actuators based on thermoplastic polyurethane and their actuation performances including tiny force measurement. Polymer, 2019, 180, 121678.	3.8	13

QINGQING NI

#	Article	IF	CITATIONS
37	Multifunctional composite nanofibers with shape memory and piezoelectric properties for energy harvesting. Journal of Intelligent Material Systems and Structures, 2020, 31, 956-966.	2.5	13
38	Low-velocity drop weight impact behavior of Twaron® fabric investigated using experimental and numerical simulations. International Journal of Impact Engineering, 2021, 149, 103796.	5.0	13
39	Ultrathin, Ultralight, and Anisotropic Ordered Reduced Graphene Oxide Fiber Electromagnetic Interference Shielding Membrane. Advanced Materials Technologies, 2021, 6, 2100531.	5.8	13
40	Actuation Characteristics and Mechanism of Electroactive Plasticized Thermoplastic Polyurethane. Langmuir, 2020, 36, 14933-14941.	3.5	12
41	Shape memory driving thickness-adjustable G@SMPU sponge with ultrahigh carbon loading ratio for excellent microwave shielding performance. Materials Letters, 2019, 236, 116-119.	2.6	10
42	Benzoyl peroxide thermo-crosslinked poly(ethylene-co-vinyl acetate) foam with two-way shape memory effect. Materials Letters, 2020, 264, 127343.	2.6	10
43	Controlled hydrothermal synthesis of different sizes of BaTiO ₃ nano-particles for microwave absorption. Materials Research Express, 2019, 6, 1250i3.	1.6	9
44	Shape memory polyurethaneâ€based electrospun yarns for thermoâ€responsive actuation. Journal of Applied Polymer Science, 2021, 138, 50565.	2.6	9
45	Influence of Crimp and Inter-Yarn Friction on the Mechanical Properties of Woven Fabric under Uniaxial/Biaxial Tensile Loading. Fibres and Textiles in Eastern Europe, 2020, 28, 43-52.	0.5	9
46	Development of high performance two-way shape memory zinc dimethacrylate/ethylene vinyl acetate composite fibers for building flexible yarn actuators. Composites Science and Technology, 2022, 224, 109460.	7.8	8
47	A sustainable, continuously expandable, wearable breath moisture-induced electricity generator. Carbon, 2022, 194, 104-113.	10.3	7
48	Highly aligned nonwoven vapor grown carbon fibre based polyurethane fibrous membrane for direction-dependent microwave shielding. Materials Letters, 2019, 245, 98-102.	2.6	6
49	Development of thermoplastic epoxy filaments with shape memory properties. Polymer Testing, 2021, 103, 107374.	4.8	6
50	Influence of surface modification of carbon fiber based on magnetron sputtering technology on mechanical properties of carbon fiber composites. Materials Research Express, 2020, 7, 105602.	1.6	6
51	Flexible nanopositioning actuators based on functional nanocomposites. Composites Science and Technology, 2020, 186, 107937.	7.8	5
52	Co, Ni-coordinated ZIF derived nitrogen doped carbon network with encapsulated alloy for microwave absorption. Diamond and Related Materials, 2021, 120, 108669.	3.9	5
53	Electrothermallyâ€Driven Elongatingâ€Contracting Film Actuators Based on Twoâ€Way Shape Memory Carbon Nanotube/Ethyleneâ€Vinyl Acetate Composites. Advanced Materials Technologies, 2022, 7, .	5.8	5
54	Multi-layer nanofibrous tubes with dual drug-release profiles for vascular graft engineering. Journal of Drug Delivery Science and Technology, 2019, 53, 100900.	3.0	4

QINGQING NI

#	Article	IF	CITATIONS
55	Twoâ€Way Reversible Shape Memory Properties of Benzoyl Peroxide Crosslinked Poly(ethyleneâ€ <i>co</i> â€vinyl acetate) under Different Stress Conditions. Macromolecular Materials and Engineering, 2020, 305, 1900825.	3.6	4
56	A numerical study on the low-velocity impact behavior of the Twaron [®] fabric subjected to oblique impact. Reviews on Advanced Materials Science, 2021, 60, 980-994.	3.3	4
57	A numerical study on the influence of hole defects on impact behavior of Twaron [®] fabric subjected to low-velocity impacts. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110184.	1.0	2
58	Controllable assembly of continuous hollow graphene fibers with robust mechanical performance and multifunctionalities. Nanotechnology, 2022, 33, 155602.	2.6	2