
Stephan Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089263/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impaired Intracellular Ca2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. International Journal of Molecular Sciences, 2022, 23, 1319.	1.8	7
2	Lipoxins reduce obesity-induced adipose tissue inflammation in 3D-cultured human adipocytes and explant cultures. IScience, 2022, 25, 104602.	1.9	4
3	Exploring Obscurin and SPEG Kinase Biology. Journal of Clinical Medicine, 2021, 10, 984.	1.0	12
4	The N2A region of titin has a unique structural configuration. Journal of General Physiology, 2021, 153, .	0.9	12
5	Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism. Journal of Molecular Biology, 2021, 433, 166901.	2.0	22
6	Challenges in PhD education due to COVID-19 - disrupted supervision or business as usual: a cross-sectional survey of Swedish biomedical sciences graduate students. BMC Medical Education, 2021, 21, 294.	1.0	23
7	Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Journal of Clinical Investigation, 2021, 131, .	3.9	18
8	The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophysical Reviews, 2021, 13, 653-677.	1.5	14
9	The M-band: The underestimated part of the sarcomere. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118440.	1.9	70
10	The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. International Journal of Molecular Sciences, 2020, 21, 7936.	1.8	9
11	Comparative analysis of obesity-related cardiometabolic and renal biomarkers in human plasma and serum. Scientific Reports, 2019, 9, 15385.	1.6	19
12	Cullin-3–dependent deregulation of ACTN1 represents a pathogenic mechanism in nemaline myopathy. JCI Insight, 2019, 4, .	2.3	14
13	Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Communications Biology, 2019, 2, 178.	2.0	20
14	PKC and PKN in heart disease. Journal of Molecular and Cellular Cardiology, 2019, 128, 212-226.	0.9	50
15	miR-486 is modulated by stretch and increases ventricular growth. JCI Insight, 2019, 4, .	2.3	26
16	Mutant Muscle LIM Protein C58G causes cardiomyopathy through protein depletion. Journal of Molecular and Cellular Cardiology, 2018, 121, 287-296.	0.9	19
17	Cullin E3 Ligase Activity Is Required for Myoblast Differentiation. Journal of Molecular Biology, 2017, 429, 1045-1066.	2.0	23
18	Exercise-induced alterations and loss of sarcomeric M-line organization in the diaphragm muscle of obscurin knockout mice. American Journal of Physiology - Cell Physiology, 2017, 312, C16-C28.	2.1	32

Stephan Lange

#	Article	IF	CITATIONS
19	Loss-of-function mutations in co-chaperone BAC3 destabilize small HSPs and cause cardiomyopathy. Journal of Clinical Investigation, 2017, 127, 3189-3200.	3.9	107
20	Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the cardiomyopathy-linked mutation T2580I. Open Biology, 2016, 6, 160114.	1.5	17
21	MLP and CARP are linked to chronic PKCα signalling in dilated cardiomyopathy. Nature Communications, 2016, 7, 12120.	5.8	58
22	Cathepsins in heart disease–chewing on the heartache?. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H974-H976.	1.5	9
23	Cypher and Enigma Homolog Protein Are Essential for Cardiac Development and Embryonic Survival. Journal of the American Heart Association, 2015, 4, .	1.6	15
24	Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. Journal of Molecular and Cellular Cardiology, 2015, 79, 133-144.	0.9	56
25	Cardiac Cytoarchitecture: How to Maintain a Working Heart—Waste Disposal and Recycling in Cardiomyocytes. , 2015, , 245-309.		0
26	Reply: Hereditary myopathy with early respiratory failure is caused by mutations in the titin FN3 119 domain. Brain, 2014, 137, e279-e279.	3.7	13
27	Probing Muscle Ankyrinâ€Repeat Protein (MARP) Structure and Function. Anatomical Record, 2014, 297, 1615-1629.	0.8	33
28	Breaking down protein degradation mechanisms in cardiac muscle. Trends in Molecular Medicine, 2013, 19, 239-249.	3.5	31
29	Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. Journal of Cell Biology, 2013, 200, 523-536.	2.3	63
30	Cypher/ZASP Is a Novel A-kinase Anchoring Protein. Journal of Biological Chemistry, 2013, 288, 29403-29413.	1.6	39
31	Isolation and Culture of Neonatal Mouse Cardiomyocytes. Journal of Visualized Experiments, 2013, , .	0.2	121
32	Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. Journal of General Physiology, 2013, 141, i9-i9.	0.9	0
33	Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover. Molecular Biology of the Cell, 2012, 23, 2490-2504.	0.9	60
34	Thymosin Beta 4 Is Dispensable for Murine Cardiac Development and Function. Circulation Research, 2012, 110, 456-464.	2.0	57
35	A Novel Mechanism Involving Four-and-a-half LIM Domain Protein-1 and Extracellular Signal-regulated Kinase-2 Regulates Titin Phosphorylation and Mechanics. Journal of Biological Chemistry, 2012, 287, 29273-29284.	1.6	89
36	Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of General Physiology, 2011, 137, i1-i1.	0.9	0

STEPHAN LANGE

#	Article	IF	CITATIONS
37	Simple and High Yielding Method for Preparing Tissue Specific Extracellular Matrix Coatings for Cell Culture. PLoS ONE, 2010, 5, e13039.	1.1	217
38	Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of Cell Biology, 2010, 191, 1159-1172.	2.3	102
39	Nesprin 1 is critical for nuclear positioning and anchorage. Human Molecular Genetics, 2010, 19, 329-341.	1.4	131
40	Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. Journal of Cell Science, 2009, 122, 2640-2650.	1.2	120
41	Molecular basis of the C-terminal tail-to-tail assembly of the sarcomeric filament protein myomesin. EMBO Journal, 2008, 27, 253-264.	3.5	33
42	Myomesin 3, a Novel Structural Component of the M-band in Striated Muscle. Journal of Molecular Biology, 2008, 376, 338-351.	2.0	72
43	Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band – implications for hereditary myopathies. Journal of Cell Science, 2008, 121, 1841-1851.	1.2	168
44	An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. Journal of Clinical Investigation, 2008, 118, 3870-3880.	3.9	211
45	Rigid Conformation of an Immunoglobulin Domain Tandem Repeat in the A-band of the Elastic Muscle Protein Titin. Journal of Molecular Biology, 2007, 371, 469-480.	2.0	26
46	"Zâ€eroing in on the Role of Cypher in Striated Muscle Function, Signaling, and Human Disease. Trends in Cardiovascular Medicine, 2007, 17, 258-262.	2.3	47
47	Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C-terminus. Journal of Structural Biology, 2006, 155, 239-250.	1.3	25
48	Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature, 2006, 439, 229-233.	13.7	166
49	The sarcomeric M-band during development and in disease. Journal of Muscle Research and Cell Motility, 2006, 26, 375-379.	0.9	29
50	From A to Z and back? Multicompartment proteins in the sarcomere. Trends in Cell Biology, 2006, 16, 11-18.	3.6	163
51	The Kinase Domain of Titin Controls Muscle Gene Expression and Protein Turnover. Science, 2005, 308, 1599-1603.	6.0	524
52	Dimerisation of Myomesin: Implications for the Structure of the Sarcomeric M-band. Journal of Molecular Biology, 2005, 345, 289-298.	2.0	69
53	M-band: a safeguard for sarcomere stability?. Journal of Muscle Research and Cell Motility, 2003, 24, 191-203.	0.9	78
54	Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. Journal of Cell Science, 2002, 115, 4925-4936.	1.2	230