Reinhard Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089126/publications.pdf

Version: 2024-02-01

69 papers 3,037 citations

201385 27 h-index 53 g-index

73 all docs 73 docs citations

times ranked

73

3126 citing authors

#	Article	IF	CITATIONS
1	A historical review of promotion strategies for electricity from renewable energy sources in EU countries. Renewable and Sustainable Energy Reviews, 2011, 15, 1003-1034.	8.2	319
2	Potentials and prospects for renewable energies at global scale. Energy Policy, 2008, 36, 4048-4056.	4.2	255
3	Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources $\hat{a} \in \text{``Lessons from EU countries. Energy, 2011, 36, 2186-2193.}$	4.5	225
4	The rebound effect for space heating Empirical evidence from Austria. Energy Policy, 2000, 28, 403-410.	4.2	222
5	The impact of consumer behavior on residential energy demand for space heating. Energy and Buildings, 1998, 27, 195-205.	3.1	197
6	East to west – The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Applied Energy, 2015, 160, 94-107.	5.1	129
7	Economic prospects and policy framework for hydrogen as fuel in the transport sector. Energy Policy, 2018, 123, 280-288.	4.2	111
8	Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies. Energy Policy, 2008, 36, 4012-4021.	4.2	105
9	Energy efficiency indicators in the residential sector. Energy Policy, 1997, 25, 789-802.	4.2	94
10	On the Success of Policy Strategies for the Promotion of Electricity from Renewable Energy Sources in the Eu. Energy and Environment, 2006, 17, 849-868.	2.7	90
11	The looming revolution: How photovoltaics will change electricity markets in Europe fundamentally. Energy, 2013, 57, 38-43.	4.5	90
12	Dissemination of electric vehicles in urban areas: Major factors for success. Energy, 2016, 115, 1451-1458.	4.5	90
13	SOCIO-ECONOMIC ASPECTS OF THE AUSTRIAN 200 kWp-PHOTOVOLTAIC-ROOFTOP PROGRAMME. Solar Energy, 1999, 66, 183-191.	2.9	84
14	Fixed feed-in tariff versus premium: A review of the current Spanish system. Renewable and Sustainable Energy Reviews, 2012, 16, 293-305.	8.2	80
15	On integrating large shares of variable renewables into the electricity system. Energy, 2016, 115, 1592-1601.	4.5	70
16	On the role of storage for electricity in smart energy systems. Energy, 2020, 200, 117473.	4.5	55
17	The sector coupling concept: A critical review. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e396.	1.9	53
18	The value of photovoltaic electricity for society. Solar Energy, 1995, 54, 25-31.	2.9	48

#	Article	IF	CITATIONS
19	Electric vehicles: solution or new problem?. Environment, Development and Sustainability, 2018, 20, 7-22.	2.7	48
20	On the future prospects and limits of biofuels in Brazil, the US and EU. Applied Energy, 2014, 135, 730-737.	5.1	39
21	The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15. Renewable and Sustainable Energy Reviews, 2017, 68, 1088-1096.	8.2	37
22	The role of efficiency improvements vs. price effects for modeling passenger car transport demand and energy demandâ€"Lessons from European countries. Energy Policy, 2012, 41, 36-46.	4.2	32
23	The political relevance of energy and CO2 indicators-An introduction. Energy Policy, 1997, 25, 639-649.	4.2	31
24	Market deployment strategies for photovoltaics: an international review. Renewable and Sustainable Energy Reviews, 2003, 7, 271-315.	8.2	31
25	Impacts on electricity consumption of household appliances in Austria: A comparison of time series and cross-section analyses. Energy Policy, 1998, 26, 1031-1040.	4.2	29
26	Optimal sizing of residential PV-systems from a household and social cost perspective. Solar Energy, 2017, 141, 49-58.	2.9	29
27	The impact of more efficient but larger new passenger cars on energy consumption in EU-15 countries. Energy, 2012, 48, 346-355.	4.5	28
28	Policy strategies and paths to promote sustainable energy systemsâ€"The dynamic Invert simulation tool. Energy Policy, 2007, 35, 597-608.	4.2	27
29	An international overview of promotion policies for grid-connected photovoltaic systems. Progress in Photovoltaics: Research and Applications, 2014, 22, 248-273.	4.4	27
30	Driving with the sun: Why environmentally benign electric vehicles must plug in at renewables. Solar Energy, 2015, 121, 169-180.	2.9	24
31	Economics of electric energy storage. The case of Western Balkans. Energy, 2022, 238, 121669.	4.5	21
32	On the longâ€ŧerm prospects of powerâ€ŧoâ€gas technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e318.	1.9	19
33	Financing the future infrastructure of sustainable energy systems. Green Finance, 2021, 3, 90-118.	3.6	19
34	On the economics and the future prospects of battery electric vehicles., 2020, 10, 1151-1164.		18
35	Offshore wind power grid connectionâ€"The impact of shallow versus super-shallow charging on the cost-effectiveness of public support. Energy Policy, 2011, 39, 4631-4643.	4.2	17
36	Reducing CO2 emissions of cars in the EU: analyzing the underlying mechanisms of standards, registration taxes and fuel taxes. Energy Efficiency, 2016, 9, 925-937.	1.3	17

#	Article	IF	Citations
37	Deriving efficient policy portfolios promoting sustainable energy systemsâ€"Case studies applying Invert simulation tool. Renewable Energy, 2006, 31, 2393-2410.	4.3	15
38	On the Historical Development and Future Prospects of Various Types of Electric Mobility. Energies, 2021, 14, 1070.	1.6	15
39	Driving on Renewables—On the Prospects of Alternative Fuels up to 2050 From an Energetic Point-of-View in European Union Countries. Journal of Energy Resources Technology, Transactions of the ASME, 2013, 135, .	1.4	13
40	On current and future economics of electricity storage. , 2020, 10, 1176-1192.		13
41	Progress in markets for grid-connected PV systems in the built environment. Progress in Photovoltaics: Research and Applications, 2004, 12, 427-440.	4.4	11
42	Long-term strategies for an efficient use of domestic biomass resources in Austria. Biomass and Bioenergy, 2010, 34, 449-466.	2.9	11
43	On the economics of storage for electricity: Current state and future market design prospects. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11 , .	1.9	11
44	Electric Mobility in Cities: The Case of Vienna. Energies, 2021, 14, 217.	1.6	9
45	Financial incentives to promote renewable energy systems in European electricity markets: a survey. International Journal of Global Energy Issues, 2001, 15, 5.	0.2	8
46	Consequences of different strategic decisions of market coupled zones on the development of energy systems based on coal and hydropower. Energy, 2020, 210, 118522.	4.5	8
47	Value Factors, Capture Prices and Cannibalism: nightmares for renewable energy decision-makers. Journal of World Energy Law and Business, 2021, 14, 231-247.	0.3	8
48	Economics of large-scale intermittent RES-E integration into the European grids: analyses based on the simulation software GreenNet. International Journal of Global Energy Issues, 2006, 25, 219.	0.2	7
49	Estimating storage needs for renewables in Europe: The correlation between renewable energy sources and heating and cooling demand. Smart Energy, 2021, 3, 100038.	2.6	7
50	CO2-reduction potentials and costs of biomass-based alternative energy carriers in Austria. Energy, 2014, 69, 120-131.	4.5	6
51	Efficient energy only markets. , 2015, , .		6
52	Organising a joint green European electricity market: the model ElGreen. Renewable Energy, 2004, 29, 197-210.	4.3	5
53	The relevance of cross-border transmission capacities for competition in the continental European electricity market. International Journal of Global Energy Issues, 2008, 29, 28.	0.2	5
54	Machine learning analysis for a flexibility energy approach towards renewable energy integration with dynamic forecasting of electricity balancing power. , 2017, , .		5

#	Article	IF	CITATIONS
55	How Policies Affect the Dissemination of Electric Passenger Cars Worldwide. Energies, 2021, 14, 2093.	1.6	5
56	Economic, social, and environmental aspects of Positive Energy Districtsâ€"A review. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, .	1.9	5
57	The Relevance of Asymmetry Issues for Residential Oil and Natural Gas Demand: Evidence from Selected OECD Countries, 1970-95. OPEC Review, 1998, 22, 113-143.	0.2	4
58	RESIDENTIAL PHOTOVOLTAICS APPLICATIONS: THE RELEVANCE OF NON-TECHNICAL ISSUES. International Journal of Solar Energy, 1998, 20, 37-55.	0.2	4
59	An economic, ecological and energetic assessment of battery electric, hybrid and fuel cell cars. , 2013, , .		4
60	The Growing Impact of Renewable Energy in European Electricity Markets., 2013,, 125-146.		4
61	Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria. Energies, 2021, 14, 1577.	1.6	4
62	Renewable energy systems implementation in road transport: prospects and impediments. Renewable Energy and Environmental Sustainability, 2021, 6, 39.	0.7	4
63	Some empirical findings of an Austrian appliance turn-in program. Energy, 1996, 21, 55-60.	4.5	3
64	Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings. Energies, 2020, 13, 5927.	1.6	3
65	On New Thinking and Designs of Electricity Markets. Energiepolitik Und Klimaschutz, 2019, , 369-385.	0.2	3
66	Market Penetration of Natural Gas in Europe: Prospects and Impediments. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1992, 14, 21-32.	0.5	2
67	The Long-Term Prospects of Biofuels in the EU-15 Countries. Energies, 2012, 5, 3110-3125.	1.6	1
68	New challenges in RES support. , 2016, , .		1
69	The energy knowledge triangle and its contribution to sustainable energy systems. , 2021, , .		0