Jia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2089068/publications.pdf

Version: 2024-02-01

14655 17592 16,056 188 66 121 citations h-index g-index papers 17909 192 192 192 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultimate dielectric scaling of 2D transistors via van der Waals metal integration. Nano Research, 2022, 15, 1603-1608.	10.4	13
2	RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Research, 2022, 15, 1959-1965.	10.4	23
3	Controlled Synthesis of Ultrathin PtSe ₂ Nanosheets with Thicknessâ€Tunable Electrical and Magnetoelectrical Properties. Advanced Science, 2022, 9, e2103507.	11.2	23
4	Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries. Nano Energy, 2022, 91, 106669.	16.0	49
5	Printed Zinc Paper Batteries. Advanced Science, 2022, 9, e2103894.	11.2	42
6	Tuning the Hydration Entropy of Cations during Electrochemical Intercalation for High Thermopower. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	3
7	Ferromagnetism with in-plane magnetization, Dirac spin-gapless semiconducting properties, and tunable topological states in two-dimensional rare-earth metal dinitrides. Physical Review B, 2022, 105,	3.2	9
8	Strainâ€Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS ₂ . Small, 2022, 18, e2107104.	10.0	25
9	Controllable Preparation of 2D Vertical van der Waals Heterostructures and Superlattices for Functional Applications. Small, 2022, 18, e2107059.	10.0	15
10	Mo ₂ C-MoO ₂ Heterostructure Quantum Dots for Enhanced Electrocatalytic Nitrogen Reduction to Ammonia. ACS Nano, 2022, 16, 643-654.	14.6	55
11	Endoepitaxial growth of monolayer mosaic heterostructures. Nature Nanotechnology, 2022, 17, 493-499.	31.5	58
12	Coexistence of extended flat band and Kekul $\tilde{\mathbb{A}}$ order in Li-intercalated graphene. Physical Review B, 2022, 105, .	3.2	18
13	Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 2022, 34, e2202382.	21.0	168
14	A dual-regulation strategy of B/N codoped CNT-encapsulated Ni nanoparticles as a catalytic host and separator coating promises high-performance Li-S batteries. Science China Technological Sciences, 2022, 65, 1567-1577.	4.0	2
15	Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	10
16	Stimulating the Pre-Catalyst Redox Reaction and the Proton–Electron Transfer Process of Cobalt Phthalocyanine for CO ₂ Electroreduction. Journal of Physical Chemistry C, 2022, 126, 9665-9672.	3.1	7
17	Femtomolarâ€Level Molecular Sensing of Monolayer Tungsten Diselenide Induced by Heteroatom Doping with Longâ€Term Stability. Advanced Functional Materials, 2022, 32, .	14.9	21
18	Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 7811-7820.	11.2	76

#	Article	IF	CITATIONS
19	Synthesis of Group VIII Magnetic Transition-Metal-Doped Monolayer MoSe < sub > 2 < /sub > . ACS Nano, 2022, 16, 10623-10631.	14.6	18
20	Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nature Communications, 2022, 13, .	12.8	62
21	LixNa2â^'xW4O13 nanosheet for scalable electrochromic device. Frontiers of Optoelectronics, 2021, 14, 298-310.	3.7	3
22	Inâ€plane epitaxial growth of 2D CoSeâ€WSe 2 metalâ€semiconductor lateral heterostructures with improved WSe 2 transistors performance. InformaÄnÃ-Materiály, 2021, 3, 222-228.	17. 3	21
23	Ultrasensitive molecular sensing of few-layer niobium diselenide. Journal of Materials Chemistry A, 2021, 9, 2725-2733.	10.3	20
24	Degradation and regeneration of Fe–N _{<i>x</i>} active sites for the oxygen reduction reaction: the role of surface oxidation, Fe demetallation and local carbon microporosity. Chemical Science, 2021, 12, 11576-11584.	7.4	30
25	Highly Selective Synthesis of Monolayer or Bilayer WSe ₂ Single Crystals by Pre-annealing the Solid Precursor. Chemistry of Materials, 2021, 33, 1307-1313.	6.7	20
26	Nondegenerate Pâ€Type Inâ€Doped SnS ₂ Monolayer Transistor. Advanced Electronic Materials, 2021, 7, 2001168.	5.1	13
27	Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nature Materials, 2021, 20, 818-825.	27.5	206
28	High-order superlattices by rolling up van der Waals heterostructures. Nature, 2021, 591, 385-390.	27.8	163
29	Manipulation of the Electronic State of Mott Iridate Superlattice through Protonation Induced Electronâ€Filling. Advanced Functional Materials, 2021, 31, 2100261.	14.9	7
30	Two-dimensional intrinsic ferromagnetic monolayer transition metal oxyhydroxide. Physical Review B, 2021, 103, .	3.2	10
31	Chargeâ€Gradient Hydrogels Enable Direct Zero Liquid Discharge for Hypersaline Wastewater Management. Advanced Materials, 2021, 33, e2100141.	21.0	37
32	Experimental Evidence of Chiral Symmetry Breaking in Kekulé-Ordered Graphene. Physical Review Letters, 2021, 126, 206804.	7.8	72
33	Oxidation State Modulation of Bismuth for Efficient Electrocatalytic Nitrogen Reduction to Ammonia. Advanced Functional Materials, 2021, 31, 2100300.	14.9	90
34	Highâ€Resolution Van der Waals Stencil Lithography for 2DÂTransistors. Small, 2021, 17, e2101209.	10.0	13
35	Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration. Nature Communications, 2021, 12, 4205.	12.8	69
36	Phase Engineering of Atomically Thin Perovskite Oxide for Highly Active Oxygen Evolution. Advanced Functional Materials, 2021, 31, 2102002.	14.9	37

#	Article	IF	CITATIONS
37	Synthesis of Ultrathin 2D Nonlayered αâ€MnSe Nanosheets, MnSe/WS ₂ Heterojunction for Highâ€Performance Photodetectors. Small Structures, 2021, 2, 2100028.	12.0	31
38	2D Metallic Transitionâ€Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Advanced Functional Materials, 2021, 31, 2105132.	14.9	111
39	High-efficiency solar heat storage enabled by adaptive radiation management. Cell Reports Physical Science, 2021, 2, 100533.	5.6	15
40	Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite. Thermochimica Acta, 2021, 703, 178980.	2.7	14
41	Reversible function switching of Ag catalyst in Mg/S battery with chloride-containing electrolyte. Energy Storage Materials, 2021, 42, 513-516.	18.0	9
42	Heat-triggered high-performance thermocells enable a self-powered forest fire alarm. Journal of Materials Chemistry A, 2021, 9, 26119-26126.	10.3	17
43	Thermal conductivity of graphite nanofibers electrospun from graphene oxide-doped polyimide. New Carbon Materials, 2021, 36, 940-947.	6.1	0
44	Recent advances in screening two-dimensional materials for high-performance energy storage and conversion devices based on electronic structure theory. Chinese Science Bulletin, 2021, 66, 640-656.	0.7	1
45	A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity. Nano Energy, 2020, 67, 104256.	16.0	46
46	Ultrafast growth of large single crystals of monolayer WS2 and WSe2. National Science Review, 2020, 7, 737-744.	9.5	64
47	Plasma-etched functionalized graphene as a metal-free electrode catalyst in solid acid fuel cells. Journal of Materials Chemistry A, 2020, 8, 2445-2452.	10.3	20
48	An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Storage Materials, 2020, 33, 290-297.	18.0	69
49	Family of Magicâ€Sized Carbon Clusters on Transition Metal Substrates. Advanced Functional Materials, 2020, 30, 2006671.	14.9	2
50	Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors. Nano Research, 2020, 13, 2091-2097.	10.4	44
51	Hollow "graphene―microtubes using polyacrylonitrile nanofiber template and potential applications of field emission. Carbon, 2020, 167, 439-445.	10.3	3
52	Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochimica Acta, 2020, 690, 178649.	2.7	32
53	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11 , 3049.	12.8	537
54	Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials. Journal of Materials Science, 2020, 55, 9414-9424.	3.7	13

#	Article	IF	CITATIONS
55	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	27.8	393
56	Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142.	19.5	82
57	Edgeâ€Rich Feâ^'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	21.0	215
58	Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Research, 2020, 13, 2506-2511.	10.4	61
59	Atomic Imaging of Subsurface Interstitial Hydrogen and Insights into Surface Reactivity of Palladium Hydrides. Angewandte Chemie - International Edition, 2020, 59, 20348-20352.	13.8	36
60	Efficient strain modulation of 2D materials via polymer encapsulation. Nature Communications, 2020, 11, 1151.	12.8	215
61	Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Science Advances, 2020, 6, eaay4092.	10.3	67
62	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	12.9	27
63	Solubility-Dependent Protective Effects of Binary Alloys for Lithium Anode. ACS Applied Energy Materials, 2020, 3, 2278-2284.	5.1	16
64	Layered MXene Protected Lithium Metal Anode as an Efficient Polysulfide Blocker for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 892-899.	4.7	22
65	Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS ₂ /MoO ₂ /CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. Journal of Materials Chemistry A, 2020, 8, 14944-14954.	10.3	25
66	Unveiling the Axial Hydroxyl Ligand on FeN ₄ C Electrocatalysts and Its Impact on the pHâ€Dependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	11.2	111
67	Mitigating Metal Dissolution and Redeposition of Pt-Co Catalysts in PEM Fuel Cells: Impacts of Structural Ordering and Particle Size. Journal of the Electrochemical Society, 2020, 167, 064520.	2.9	25
68	Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceramics International, 2020, 46, 20810-20818.	4.8	64
69	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	18.0	54
70	Coordination Engineering in Cobalt–Nitrogen-Functionalized Materials for CO ₂ Reduction. Journal of Physical Chemistry Letters, 2019, 10, 6551-6557.	4.6	42
71	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	14.9	159
72	A Lightweight 3D Cu Nanowire Network with Phosphidation Gradient as Current Collector for Highâ€Density Nucleation and Stable Deposition of Lithium. Advanced Materials, 2019, 31, e1904991.	21.0	114

#	Article	IF	CITATIONS
73	Theoretical Investigation of the Electrochemical Performance of Transition Metal Nitrides for Lithiumâ€"Sulfur Batteries. Journal of Physical Chemistry C, 2019, 123, 25025-25030.	3.1	35
74	Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. Nano Research, 2019, 12, 2781-2787.	10.4	9
75	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	10.3	28
76	van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Danglingâ€Bondâ€Free WSe ₂ and WS ₂ . Advanced Functional Materials, 2019, 29, 1806611.	14.9	99
77	Oxygenâ€Functionalized Ultrathin Ti ₃ C ₂ T _{<i>x</i>} MXene for Enhanced Electrocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 1368-1373.	6.8	204
78	van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Research, 2019, 12, 1683-1689.	10.4	31
79	Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Science: Materials International, 2019, 29, 247-255.	4.4	70
80	Phase‶unable Synthesis of Ultrathin Layered Tetragonal CoSe and Nonlayered Hexagonal CoSe Nanoplates. Advanced Materials, 2019, 31, e1900901.	21.0	52
81	Enhanced thermal conductivity by combined fillers in polymer composites. Thermochimica Acta, 2019, 676, 198-204.	2.7	23
82	Thermal design and optimization of lithium ion batteries for unmanned aerial vehicles. Energy Storage, 2019, 1, e48.	4.3	10
83	Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy, 2019, 60, 305-311.	16.0	106
84	Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Materials, 2019, 23, 610-616.	18.0	40
85	Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO ₂ â€MXene Heterostructures for Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900219.	19.5	481
86	High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Research, 2019, 12, 1105-1113.	10.4	28
87	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Research, 2019, 12, 1139-1145.	10.4	63
88	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	10.4	39
89	Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon, 2019, 148, 525-531.	10.3	70
90	$\langle i \rangle$ In Situ $\langle i \rangle$ X-ray Absorption Spectroscopic Investigation of the Capacity Degradation Mechanism in Mg/S Batteries. Nano Letters, 2019, 19, 2928-2934.	9.1	63

#	Article	IF	Citations
91	Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Communications Chemistry, 2019, 2, .	4.5	57
92	Feâ€Nâ€C Catalysts: Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970332.	14.9	3
93	P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019, 57, 473-479.	16.0	89
94	Realizing Ultralow Concentration Gelation of Graphene Oxide with Artificial Interfaces. Advanced Materials, 2019, 31, e1805075.	21.0	16
95	Improving a Mg/S Battery with YCl ₃ Additive and Magnesium Polysulfide. Advanced Science, 2019, 6, 1800981.	11.2	50
96	Boosting the Efficient Energy Output of Electret Nanogenerators by Suppressing Air Breakdown under Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3984-3989.	8.0	20
97	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
98	High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Research, 2019, 12, 339-344.	10.4	32
99	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5687-5694.	8.0	126
100	All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting. Research, 2019, 2019, 2460953.	5.7	18
101	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
102	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018 , 9 , 1002 .	12.8	255
103	In Situ Electrochemically Derived Amorphousâ€Li ₂ S for High Performance Li ₂ S/Graphite Full Cell. Small, 2018, 14, e1703871.	10.0	29
104	Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes. Nanoscale, 2018, 10, 12981-12990.	5.6	55
105	Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy. ACS Applied Materials & Energy. AC	8.0	29
106	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	21.0	300
107	Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Advanced Energy Materials, 2018, 8, 1702481.	19.5	111
108	Highâ€Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics. Advanced Functional Materials, 2018, 28, 1705409.	14.9	84

#	Article	IF	Citations
109	Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion. Chemistry of Materials, 2018, 30, 2687-2693.	6.7	71
110	Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. Journal of Applied Polymer Science, 2018, 135, 45787.	2.6	40
111	Nickel–Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701759.	19.5	225
112	Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments. Journal of Materials Chemistry A, 2018, 6, 24114-24119.	10.3	75
113	A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride. New Carbon Materials, 2018, 33, 510-515.	6.1	8
114	Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nature Communications, 2018, 9, 5289.	12.8	119
115	Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nature Communications, 2018, 9, 5146.	12.8	255
116	Atmosphericâ€Pressure Synthesis of 2D Nitrogenâ€Rich Tungsten Nitride. Advanced Materials, 2018, 30, e1805655.	21.0	104
117	Synthetic Control of Two-Dimensional NiTe ₂ Single Crystals with Highly Uniform Thickness Distributions. Journal of the American Chemical Society, 2018, 140, 14217-14223.	13.7	119
118	Highly Efficient Water Harvesting with Optimized Solar Thermal Membrane Distillation Device. Global Challenges, 2018, 2, 1800001.	3.6	108
119	Synthesis of Ultrathin Metallic MTe ₂ (M = V, Nb, Ta) Singleâ€Crystalline Nanoplates. Advanced Materials, 2018, 30, e1801043.	21.0	183
120	Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered $\hat{l}^3\text{-Cul}.$ Npj 2D Materials and Applications, 2018, 2, .	7.9	34
121	Origin of storage capacity enhancement by replacing univalent ion with multivalent ion for energy storage. Electrochimica Acta, 2018, 282, 30-37.	5.2	11
122	Modulating Surface Composition and Oxygen Reduction Reaction Activities of Pt–Ni Octahedral Nanoparticles by Microwave-Enhanced Surface Diffusion during Solvothermal Synthesis. Chemistry of Materials, 2018, 30, 4355-4360.	6.7	21
123	Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12, 317-321.	31.5	747
124	Tunable Structural, Electronic, and Optical Properties of Layered Two-Dimensional C ₂ N and MoS ₂ van der Waals Heterostructure as Photovoltaic Material. Journal of Physical Chemistry C, 2017, 121, 3654-3660.	3.1	233
125	Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy, 2017, 33, 306-312.	16.0	352
126	Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. Journal of Materials Science, 2017, 52, 5788-5798.	3.7	24

#	Article	IF	Citations
127	Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochimica Acta, 2017, 229, 422-428.	5.2	329
128	Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 2017, 115, 52-59.	3.8	92
129	Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Applied Materials & Company (1988) Materi	8.0	463
130	Nickeloceneâ€Precursorâ€Facilitated Fast Growth of Graphene/hâ€BN Vertical Heterostructures and Its Applications in OLEDs. Advanced Materials, 2017, 29, 1701325.	21.0	54
131	Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nature Communications, 2017, 8, 15630.	12.8	258
132	Theoretical Investigation of the Intercalation Chemistry of Lithium/Sodium Ions in Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2017, 121, 13599-13605.	3.1	87
133	Allâ€Printed Porous Carbon Film for Electricity Generation from Evaporationâ€Driven Water Flow. Advanced Functional Materials, 2017, 27, 1700551.	14.9	284
134	Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI ₂ /MoS ₂ (WS ₂ , WSe ₂) van der Waals Heterostructures, and Patterned Arrays. ACS Nano, 2017, 11, 3413-3419.	14.6	59
135	Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37493-37500.	8.0	110
136	Nanoplates: Synthesis of 2D Layered Bil ₃ Nanoplates, Bil ₃ /WSe ₂ van der Waals Heterostructures and Their Electronic, Optoelectronic Properties (Small 38/2017). Small, 2017, 13, .	10.0	2
137	Synthesis of 2D Layered Bil ₃ Nanoplates, Bil ₃ /WSe ₂ van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. Small, 2017, 13, 1701034.	10.0	59
138	Solar-driven simultaneous steam production and electricity generation from salinity. Energy and Environmental Science, 2017, 10, 1923-1927.	30.8	380
139	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO ₂ to Hydrocarbons and Oxygenates. ACS Catalysis, 2017, 7, 6245-6250.	11.2	129
140	Twinborn TiO ₂ –TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries. Energy and Environmental Science, 2017, 10, 1694-1703.	30.8	884
141	High areal specific capacity of Ni ₃ V ₂ O ₈ /carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 15517-15524.	10.3	43
142	The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale, 2017, 9, 11584-11589.	5.6	76
143	Unraveling the Influence of Metal Substrates on Graphene Nucleation from First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 23239-23245.	3.1	20
144	Pt Submonolayers on Au Nanoparticles: Coverage-Dependent Atomic Structures and Electrocatalytic Stability on Methanol Oxidation. Journal of Physical Chemistry C, 2016, 120, 28664-28671.	3.1	17

#	Article	IF	Citations
145	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	13.8	32
146	Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy, 2016, 30, 684-690.	16.0	50
147	Induced Potential in Porous Carbon Films through Water Vapor Absorption. Angewandte Chemie - International Edition, 2016, 55, 8003-8007.	13.8	170
148	A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 2016, 21, 133-144.	16.0	168
149	Monolayer charge-neutral graphene on platinum with extremely weak electron-phonon coupling. Physical Review B, 2015, 92, .	3.2	12
150	Effects of strain and oxygen vacancies on the ferroelectric and antiferrodistortive distortions in <mml:math< td=""><td>2.0</td><td>26</td></mml:math<>	2.0	26
150	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>PbTiO</mml:mi><mr< td=""><td>nl:ṁ̀ń>3<!--</td--><td>mml:mn></td></td></mr<></mml:msub></mml:mrow>	nl:ṁ̀ń>3 </td <td>mml:mn></td>	mml:mn>
151	Theory of the Dirac half metal and quantum anomalous Hall effect in Mn-intercalated epitaxial graphene. Physical Review B, 2015, 92, .	3.2	50
152	Secondary batteries with multivalent ions for energy storage. Scientific Reports, 2015, 5, 14120.	3.3	125
153	Freezeâ€drying method prepared <scp>UHMWPE/CNT</scp> s composites with optimized micromorphologies and improved tribological performance. Journal of Applied Polymer Science, 2015, 132, .	2.6	7
154	Experimental and theoretical studies of effective thermal conductivity of composites made of silicone rubber and Al2O3 particles. Thermochimica Acta, 2015, 614, 1-8.	2.7	91
155	Prediction of interfacial thermal resistance of carbon fiber in one dimensional fiber-reinforced composites using laser flash analysis. Composites Science and Technology, 2015, 110, 69-75.	7.8	13
156	Tailoring Native Defects and Zinc Impurities in Li ₄ Ti ₅ O ₁₂ : Insights from First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 5238-5245.	3.1	23
157	First principles study of ruthenium(<scp>ii</scp>) sensitizer adsorption on anatase TiO ₂ (001) surface. RSC Advances, 2015, 5, 60230-60236.	3.6	7
158	Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24622-24628.	8.0	156
159	Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits. Nature Communications, 2015, 6, 8150.	12.8	73
160	First-principles study of native defects in LiTi2O4. Computational Materials Science, 2015, 96, 263-267.	3.0	6
161	Ferromagnetism and topological surface states of manganese doped Bi2Te3: Insights from density-functional calculations. Journal of Chemical Physics, 2014, 140, 124704.	3.0	19
162	Microscopic origin of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying. Physical Review B, 2014, 89, .	3.2	84

#	Article	IF	CITATIONS
163	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	3.3	67
164	Metallicity retained by covalent functionalization of graphene with phenyl groups. Nanoscale, 2013, 5, 7537.	5.6	9
165	Flexible supercapacitors. Particuology, 2013, 11, 371-377.	3.6	92
166	Dirac Fermions in Strongly Bound Graphene Systems. Physical Review Letters, 2012, 109, 206802.	7.8	53
167	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284
168	Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study. Physical Chemistry Chemical Physics, 2011, 13, 12225.	2.8	96
169	Formation, Morphology, and Effect of Complex Defects in Boron Nitride Nanotubes: An ab initio Calculation. Journal of Physical Chemistry C, 2011, 115, 12782-12788.	3.1	7
170	Lithium Intercalation Induced Decoupling of Epitaxial Graphene on SiC(0001): Electronic Property and Dynamic Process. Journal of Physical Chemistry C, 2011, 115, 23992-23997.	3.1	32
171	Ab initio Study of Half-Metallicity and Magnetism of Complex Organometallic Molecular Wires. Journal of Physical Chemistry C, 2011, 115, 7292-7297.	3.1	19
172	Ab Initio Investigation about the Possibility of Ferromagnetism Induced by Boron Vacancy in BN Nanotubes. Journal of Physical Chemistry C, 2010, 114, 4357-4361.	3.1	7
173	Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons. Physical Review B, 2010, 82, .	3.2	41
174	Preparing spin-polarized scanning tunneling microscope probes on capped carbon nanotubes by Fe doping: A first-principles study. Applied Physics Letters, 2009, 94, 193106.	3.3	4
175	Molecular and atomic adsorption of hydrogen on <mml:math altimg="si14.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>-ow³.6 mm</td><td>l:mn>2</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	-ow³.6 mm	l:mn>2
176	Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes. Chemical Physics Letters, 2009, 476, 240-243.	2.6	28
177	Activated dissociation of O2 on Pb(111) surfaces by Pb adatoms. Physical Review B, 2009, 80, .	3.2	7
178	Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices. Journal of the American Chemical Society, 2009, 131, 1796-1801.	13.7	80
179	Alkali-Metal-Doped B80 as High-Capacity Hydrogen Storage Media. Journal of Physical Chemistry C, 2008, 112, 19268-19271.	3.1	107
180	Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes. Physical Review B, 2008, 77, .	3.2	19

#	ARTICLE Hydrogen-induced metallization of zinc oxide mml:math	IF	CITATIONS
181	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mo></mml:mo></mml:mrow></mml:mrow></mml:mrow>	ver) Tj ETQ	19 ₄₃ 1 0.78 <mark>4</mark> 3
182	High-Resolution Scanning Tunneling Spectroscopy of Magnetic Impurity Induced Bound States in the Superconducting Gap of Pb Thin Films. Physical Review Letters, 2008, 100, 226801.	7.8	182
183	TUNABLE ELECTRIC CONDUCTIVITIES OF Au -DOPED BORON NITRIDE NANOTUBES. Nano, 2007, 02, 367-372.	1.0	3
184	Selective adsorption of first-row atoms on BN nanotubes. Chemical Physics Letters, 2006, 426, 148-154.	2.6	27
185	Electrochemical Study of Breast Cancer Cells MCF-7 and Its Application in Evaluating the Effect of Diosgenin. Analytical Sciences, 2005, 21, 561-564.	1.6	39
186	DNA biosensor based on chitosan film doped with carbon nanotubes. Analytical Biochemistry, 2005, 346, 107-114.	2.4	161
187	Long periodic oscillation of electronic properties in capped finite-length armchair carbon nanotubes. Physical Review B, 2005, 71, .	3.2	6
188	Carbon Nanotubes-Based Amperometric Cholesterol Biosensor Fabricated Through Layer-by-Layer Technique. Electroanalysis, 2004, 16, 1992-1998.	2.9	101