
Stephen A Shinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/208901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement**. ChemBioChem, 2022, 23, .	1.3	9
2	Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nature Communications, 2020, 11, 3958.	5.8	22
3	Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Molecular Cell, 2019, 76, 909-921.e3.	4.5	83
4	Structure and Function of the Acetylpolyamine Amidohydrolase from the Deep Earth Halophile <i>Marinobacter subterrani</i> . Biochemistry, 2019, 58, 3755-3766.	1.2	8
5	Structure of Sesquisabinene Synthase 1, a Terpenoid Cyclase That Generates a Strained [3.1.0] Bridged-Bicyclic Product. ACS Chemical Biology, 2019, 14, 1011-1019.	1.6	5
6	Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry, 2018, 57, 3105-3114.	1.2	27
7	Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nature Communications, 2017, 8, 15368.	5.8	139
8	Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics and Chromatin, 2017, 10, 12.	1.8	47
9	The Taf14 YEATS domain is a reader of histone crotonylation. Nature Chemical Biology, 2016, 12, 396-398.	3.9	195
10	Targeted Disruption of the Interaction between WD-40 Repeat Protein 5 (WDR5) and Mixed Lineage Leukemia (MLL)/SET1 Family Proteins Specifically Inhibits MLL1 and SETd1A Methyltransferase Complexes. Journal of Biological Chemistry, 2016, 291, 22357-22372.	1.6	56
11	Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Journal of Biological Chemistry, 2016, 291, 21283-21295.	1.6	64
12	Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Research, 2016, 44, 6102-6112.	6.5	30
13	Unique Role of the WD-40 Repeat Protein 5 (WDR5) Subunit within the Mixed Lineage Leukemia 3 (MLL3) Histone Methyltransferase Complex. Journal of Biological Chemistry, 2015, 290, 25819-25833.	1.6	25
14	Biochemical Reconstitution and Phylogenetic Comparison of Human SET1 Family Core Complexes Involved in Histone Methylation. Journal of Biological Chemistry, 2015, 290, 6361-6375.	1.6	92
15	Automethylation Activities within the Mixed Lineage Leukemia-1 (MLL1) Core Complex Reveal Evidence Supporting a "Two-active Site―Model for Multiple Histone H3 Lysine 4 Methylation. Journal of Biological Chemistry, 2014, 289, 868-884.	1.6	27
16	Characterization of the Grp94/OS-9 Chaperone–Lectin Complex. Journal of Molecular Biology, 2014, 426, 3590-3605.	2.0	15
17	A Non-Active Site Set Domain Surface that is Crucial for Di-Methylation of Histone H3 Lysine 4 by the Mixed Lineage Leukemia-1 (MLL1) Core Complex. Biophysical Journal, 2014, 106, 477a.	0.2	0
18	A Non-Active-Site SET Domain Surface Crucial for the Interaction of MLL1 and the RbBP5/Ash2L Heterodimer within MLL Family Core Complexes. Journal of Molecular Biology, 2014, 426, 2283-2299.	2.0	46

#	Article	IF	CITATIONS
19	Stepwise Conversion of a Binding Protein to a Fluorescent Switch: Application to Thermoanaerobacter tengcongensis Ribose Binding Protein. Biochemistry, 2013, 52, 600-612.	1.2	19