List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2088610/publications.pdf Version: 2024-02-01

	23567	22166
13,278	58	113
citations	h-index	g-index
142	142	11409
docs citations	times ranked	citing authors
	citations 142	13,278 58 citations h-index 142 142

#	Article	IF	CITATIONS
1	Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012, 12, 3783-3787.	9.1	1,552
2	Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Advanced Materials, 2011, 23, 3155-3160.	21.0	638
3	Oxygen Vacancies Dominated NiS ₂ /CoS ₂ Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices. Advanced Materials, 2017, 29, 1704681.	21.0	533
4	Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 2010, 4, 2233-2241.	14.6	509
5	Shortâ€Range Order in Mesoporous Carbon Boosts Potassiumâ€ŀon Battery Performance. Advanced Energy Materials, 2018, 8, 1701648.	19.5	451
6	A new aluminium-ion battery with high voltage, high safety and low cost. Chemical Communications, 2015, 51, 11892-11895.	4.1	411
7	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	30.8	402
8	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for Highâ€Performance Potassiumâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1800171.	19.5	363
9	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 2016, 19, 279-288.	16.0	341
10	Metallic Graphene‣ike VSe ₂ Ultrathin Nanosheets: Superior Potassium″on Storage and Their Working Mechanism. Advanced Materials, 2018, 30, e1800036.	21.0	341
11	Pistachioâ€Shuckâ€Like MoSe ₂ /C Core/Shell Nanostructures for Highâ€Performance Potassiumâ€Ion Storage. Advanced Materials, 2018, 30, e1801812.	21.0	297
12	A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Scientific Reports, 2013, 3, 3383.	3.3	286
13	Bambooâ€Like Hollow Tubes with MoS ₂ /Nâ€Dopedâ€C Interfaces Boost Potassiumâ€lon Storage. Advanced Functional Materials, 2018, 28, 1803409.	14.9	263
14	Tuning Nanowires and Nanotubes for Efficient Fuelâ€Cell Electrocatalysis. Advanced Materials, 2016, 28, 10117-10141.	21.0	228
15	Hexacyanoferrateâ€Type Prussian Blue Analogs: Principles and Advances Toward Highâ€Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 2021, 11, 2000943.	19.5	217
16	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. ACS Central Science, 2015, 1, 516-522.	11.3	202
17	Metallic Octahedral CoSe ₂ Threaded by Nâ€Doped Carbon Nanotubes: A Flexible Framework for Highâ€Performance Potassiumâ€ion Batteries. Advanced Science, 2018, 5, 1800782.	11.2	198
18	Microspheric Na ₂ Ti ₃ O ₇ consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale, 2013, 5, 594-599.	5.6	167

#	Article	IF	CITATIONS
19	Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy, 2019, 59, 762-772.	16.0	155
20	Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy, 2019, 63, 103868.	16.0	153
21	Carbon Anode Materials: A Detailed Comparison between Naâ€ion and Kâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003640.	19.5	150
22	A Universal Strategy for Intimately Coupled Carbon Nanosheets/MoM Nanocrystals (M = P, S, C, and O) Hierarchical Hollow Nanospheres for Hydrogen Evolution Catalysis and Sodiumâ€lon Storage. Advanced Materials, 2018, 30, e1706085.	21.0	147
23	Hollow Multihole Carbon Bowls: A Stress–Release Structure Design for High-Stability and High-Volumetric-Capacity Potassium-Ion Batteries. ACS Nano, 2019, 13, 11363-11371.	14.6	143
24	Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior. ACS Nano, 2019, 13, 6906-6916.	14.6	139
25	Colloidal synthesis of VSe ₂ single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2016, 52, 9228-9231.	4.1	131
26	Cr _{0.5} Nb _{24.5} O ₆₂ Nanowires with High Electronic Conductivity for High-Rate and Long-Life Lithium-Ion Storage. ACS Nano, 2017, 11, 4217-4224.	14.6	121
27	Sulfurâ€Deficient Bismuth Sulfide/Nitrogenâ€Doped Carbon Nanofibers as Advanced Freeâ€5tanding Electrode for Asymmetric Supercapacitors. Small, 2018, 14, e1801562.	10.0	117
28	Wrinkled Rh ₂ P Nanosheets as Superior pHâ€Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 2018, 8, 1801891.	19.5	116
29	Ultrafine MoP Nanoparticle Splotched Nitrogenâ€Doped Carbon Nanosheets Enabling Highâ€Performance 3Dâ€Printed Potassiumâ€Ion Hybrid Capacitors. Advanced Science, 2021, 8, 2004142.	11.2	109
30	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Advanced Energy Materials, 2016, 6, 1600236.	19.5	108
31	A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochimica Acta, 2013, 114, 198-204.	5.2	100
32	Single crystalline Na ₂ Ti ₃ O ₇ rods as an anode material for sodium-ion batteries. RSC Advances, 2013, 3, 1041-1044.	3.6	95
33	N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chemical Engineering Journal, 2020, 388, 124396.	12.7	94
34	High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Materials, 2019, 22, 185-193.	18.0	91
35	Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Materials, 2021, 38, 329-337.	18.0	91
36	Topochemistryâ€Driven Synthesis of Transitionâ€Metal Selenides with Weakened Van Der Waals Force to Enable 3Dâ€Printed Naâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	14.9	91

#	Article	IF	CITATIONS
37	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	10.4	88
38	Zero-strain K _{0.6} Mn ₁ F _{2.7} hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.	30.8	87
39	Ultrathin Layered SnSe Nanoplates for Low Voltage, Highâ€Rate, and Longâ€Life Alkali–Ion Batteries. Small, 2017, 13, 1702228.	10.0	85
40	Confined Fe ₂ VO ₄ âŠ,Nitrogenâ€Doped Carbon Nanowires with Internal Void Space for Highâ€Rate and Ultrastable Potassiumâ€lon Storage. Advanced Energy Materials, 2019, 9, 1902674.	19.5	81
41	Unprecedented Synthesis of Holey 2D Layered Double Hydroxide Nanomesh for Enhanced Oxygen Evolution. Advanced Energy Materials, 2019, 9, 1803060.	19.5	80
42	Blowing Iron Chalcogenides into Two-Dimensional Flaky Hybrids with Superior Cyclability and Rate Capability for Potassium-Ion Batteries. ACS Nano, 2021, 15, 2506-2519.	14.6	79
43	Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance. Journal of Power Sources, 2014, 250, 181-187.	7.8	78
44	Tunable Free-Standing Core–Shell CNT@MoSe ₂ Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 14622-14631.	8.0	78
45	Flexible N doped carbon/bubble-like MoS2 core/sheath framework: Buffering volume expansion for potassium ion batteries. Journal of Colloid and Interface Science, 2020, 566, 427-433.	9.4	78
46	Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. Journal of Materials Chemistry A, 2018, 6, 11147-11153.	10.3	77
47	Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 779-788.	10.3	73
48	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	12.9	73
49	Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. Journal of Colloid and Interface Science, 2020, 574, 174-181.	9.4	70
50	Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell "nano-crisps― for high-performance potassium-ion batteries. Applied Materials Today, 2018, 13, 344-351.	4.3	69
51	The multi-yolk/shell structure of FeP@foam-like graphenic scaffolds: strong P–C bonds and electrolyte- and binder-optimization boost potassium storage. Journal of Materials Chemistry A, 2019, 7, 15673-15682.	10.3	69
52	Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Materials, 2019, 18, 43-50.	18.0	69
53	Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage. Energy Storage Materials, 2020, 27, 591-598.	18.0	69
54	Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: Engineering the interlayer spacing boosts potassium-ion storage. Energy Storage Materials, 2021, 36, 309-317.	18.0	67

#	Article	IF	CITATIONS
55	Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries. Journal of Power Sources, 2013, 228, 244-249.	7.8	66
56	Iron Selenide Microcapsules as Universal Conversionâ€Typed Anodes for Alkali Metalâ€Ion Batteries. Small, 2021, 17, e2005745.	10.0	66
57	Morphology-controlled synthesis of SnO2/C hollow core–shell nanoparticle aggregates with improved lithium storage. Journal of Materials Chemistry A, 2013, 1, 3652.	10.3	65
58	Optimization of Von Mises Stress Distribution in Mesoporous αâ€Fe ₂ O ₃ /C Hollow Bowls Synergistically Boosts Gravimetric/Volumetric Capacity and Highâ€Rate Stability in Alkaliâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1902822.	14.9	65
59	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 1652-1659.	10.3	59
60	Fe2O3@C core@shell nanotubes: Porous Fe2O3 nanotubes derived from MIL-88A as cores and carbon as shells for high power lithium ion batteries. Journal of Alloys and Compounds, 2018, 769, 969-976.	5.5	57
61	Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance. Journal of Materials Science and Technology, 2020, 55, 167-172.	10.7	57
62	Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy, 2020, 75, 104979.	16.0	55
63	Carbon-encapsulated ultrathin MoS ₂ nanosheets epitaxially grown on porous metallic TiNb ₂ O ₆ microspheres with unsaturated oxygen atoms for superior potassium storage. Journal of Materials Chemistry A, 2019, 7, 5760-5768.	10.3	54
64	SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. Journal of Electroanalytical Chemistry, 2019, 833, 113-118.	3.8	54
65	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassiumâ€lon Battery Anode. Advanced Science, 2022, 9, e2200683.	11.2	53
66	In Situ Self-Assembled FeWO ₄ /Graphene Mesoporous Composites for Li-Ion and Na-Ion Batteries. Chemistry of Materials, 2014, 26, 3721-3730.	6.7	52
67	Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries. Nano-Micro Letters, 2019, 11, 96.	27.0	51
68	A new dual-ion battery based on amorphous carbon. Science Bulletin, 2019, 64, 1634-1642.	9.0	51
69	Multidimensional Integrated Chalcogenides Nanoarchitecture Achieves Highly Stable and Ultrafast Potassiumâ€lon Storage. Small, 2019, 15, e1903720.	10.0	49
70	Yolk–shell structured FeS/MoS ₂ @nitrogen-doped carbon nanocubes with sufficient internal void space as an ultrastable anode for potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23983-23993.	10.3	49
71	Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. Journal of Alloys and Compounds, 2018, 766, 1086-1091.	5.5	47
72	Construction of sandwich-type hybrid structures by anchoring mesoporous ZnMn2O4 nanofoams on reduced graphene oxide with highly enhanced capability. Journal of Materials Chemistry A, 2016, 4, 10419-10424.	10.3	45

#	Article	IF	CITATIONS
73	Hydrogenated Na ₂ Ti ₃ O ₇ Epitaxially Grown on Flexible N-Doped Carbon Sponge for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 37974-37980.	8.0	45
74	Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer. Journal of Materials Chemistry A, 2021, 9, 1541-1551.	10.3	45
75	Nasicon material NaZr ₂ (PO ₄) ₃ : a novel storage material for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1341-1345.	10.3	44
76	A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon, 2020, 161, 834-841.	10.3	44
77	Electrochemical Conversion of CO ₂ into Negative Electrode Materials for Liâ€lon Batteries. ChemElectroChem, 2015, 2, 224-230.	3.4	43
78	Collaborative Design of Hollow Nanocubes, In Situ Cross‣inked Binder, and Amorphous Void@SiO <i>_x</i> @C as a Threeâ€Pronged Strategy for Ultrastable Lithium Storage. Small, 2020, 16, e1905736.	10.0	43
79	An ultrahigh electron-donating quaternary-N-doped reduced graphene oxide@carbon nanotube framework: a covalently coupled catalyst support for enzymatic bioelectrodes. Journal of Materials Chemistry A, 2019, 7, 11077-11085.	10.3	40
80	Marcasite-FeS2@carbon nanodots anchored on 3D cell-like graphenic matrix for high-rate and ultrastable potassium ion storage. Journal of Power Sources, 2020, 469, 228429.	7.8	39
81	Confining Pyrrhotite Fe ₇ S ₈ in Carbon Nanotubes Covalently Bonded onto 3D Few‣ayer Graphene Boosts Potassiumâ€ŀon Storage and Fullâ€Cell Applications. Small, 2021, 17, e2006719.	10.0	39
82	Mass-producible polyhedral macrotube carbon arrays with multi-hole cross-section profiles: superb 3D tertiary porous electrode materials for supercapacitors and capacitive deionization cells. Journal of Materials Chemistry A, 2020, 8, 16312-16322.	10.3	38
83	An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 428, 131093.	12.7	38
84	A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. Journal of Materials Chemistry A, 2019, 7, 25845-25852.	10.3	36
85	Sulfur and nitrogen codoped cyanoethyl celluloseâ€derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. , 2022, 4, 986-1001.		36
86	Hollow αâ€Fe ₂ O ₃ Nanospheres Synthesized Using a Carbon Template as Novel Anode Materials for Naâ€lon Batteries. ChemElectroChem, 2014, 1, 1636-1639.	3.4	33
87	(001) Facet-Dominated Hierarchically Hollow Na ₂ Ti ₃ O ₇ as a High-Rate Anode Material for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 42197-42205.	8.0	31
88	Fe ₄ [Fe(CN) ₆] ₃ : a cathode material for sodium-ion batteries. RSC Advances, 2014, 4, 42991-42995.	3.6	30
89	Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Materials Letters, 2019, 256, 126613.	2.6	30
90	Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries. Nano Today, 2021, 37, 101074.	11.9	30

#	Article	IF	CITATIONS
91	Li ₄ Ti ₅ O ₁₂ –TiO ₂ /MoO ₂ nanoclusters-embedded into carbon nanosheets core/shell porous superstructures boost lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 12096-12102.	10.3	28
92	Thickness controllable and mass produced WC@C@Pt hybrid for efficient hydrogen production. Energy Storage Materials, 2018, 10, 268-274.	18.0	28
93	Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons. Applied Catalysis B: Environmental, 2021, 286, 119880.	20.2	28
94	A sodium ion intercalation material: a comparative study of amorphous and crystalline FePO ₄ . Physical Chemistry Chemical Physics, 2015, 17, 4551-4557.	2.8	25
95	CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. Journal of Solid State Electrochemistry, 2019, 23, 27-32.	2.5	25
96	3D flower-like NaHTi ₃ O ₇ nanotubes as high-performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16528-16534.	10.3	24
97	Role of spontaneous strains on the biphasic nature of partial B-site disorder double perovskite La2NiMnO6. APL Materials, 2018, 6, 066102.	5.1	24
98	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	5.6	24
99	Hollow opening nanoflowers MoS2-CuS-EG cathodes for high-performance hybrid Mg/Li-ion batteries. Chemical Engineering Journal, 2021, 409, 128271.	12.7	23
100	Hollow Co0.85Se cubes encapsulated in graphene for enhanced potassium storage. Journal of Electroanalytical Chemistry, 2020, 864, 114100.	3.8	22
101	Electrocatalysis for Continuous Multiâ€Step Reactions in Quasiâ€Solidâ€State Electrolytes Towards Highâ€Energy and Longâ€Life Aluminum–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
102	Self-assembled amorphous manganese oxide/hydroxide spheres via multi-phase electrochemical interactions in reverse micelle electrolytes and their capacitive behavior. Journal of Materials Chemistry A, 2013, 1, 5136.	10.3	20
103	Preparation of porous nanorod polyaniline film and its high electrochemical capacitance performance. Synthetic Metals, 2011, 161, 1255-1258.	3.9	19
104	Stable Quasiâ€Solidâ€State Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	21.0	19
105	Yolk-shell structured Mo/MoO2 composite microspheres function as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 792, 191-202.	5.5	18
106	Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V ₂ O ₅ for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 25993-26001.	10.3	18
107	In-Situ Synthesis of Silicon/Polyaniline Core/Shell and Its Electrochemical Performance for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1916-A1921.	2.9	17
108	In situ assembly of 2D cobalt sulfide on stainless steel mesh as a binder-free anode for sodium ion batteries. Materials Letters, 2019, 236, 312-315.	2.6	17

#	Article	IF	CITATIONS
109	Tuning defect and hollow size of metallic KxCoF3 for ultrastable potassium storage. Energy Storage Materials, 2019, 21, 196-202.	18.0	16
110	Rational design of N-doped CNTs@C ₃ N ₄ network for dual-capture of biocatalysts in enzymatic glucose/O ₂ biofuel cells. Nanoscale, 2021, 13, 7774-7782.	5.6	16
111	Selfâ€Antiâ€Stacking 2D Metal Phosphide Loopâ€Sheet Heterostructures by Edgeâ€Topological Regulation for Highly Efficient Water Oxidation. Small, 2021, 17, e2006860.	10.0	16
112	A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2021, 46, 39251-39261.	7.1	16
113	Design Strategies of Highâ€Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. Small, 2022, 18, .	10.0	15
114	Nanostructured Li4Ti5O12 synthesized in a reverse micelle: A bridge between pseudocapacitor and lithium ion battery. Electrochimica Acta, 2012, 68, 254-259.	5.2	14
115	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of Na2Ti3O7 Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. ACS Omega, 2017, 2, 5726-5736.	3.5	14
116	K0.6CoO2-xNx porous nanoframe: A co-enhanced ionic and electronic transmission for potassium ion batteries. Chemical Engineering Journal, 2020, 396, 125218.	12.7	14
117	Ultrafast synthesis of amorphous VO _x embedded into 3D strutted amorphous carbon frameworks–short-range order in dual-amorphous composites boosts lithium storage. Journal of Materials Chemistry A, 2018, 6, 7053-7061.	10.3	13
118	A monocrystal Fe ₃ O ₄ @ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage. Journal of Materials Chemistry A, 2019, 7, 20899-20904.	10.3	12
119	Amorphous cobalt sulfide/N-doped carbon core/shell nanoparticles as an anode material for potassium-ion storage. Journal of Materials Science, 2020, 55, 15213-15221.	3.7	12
120	Anions-capture materials for electrochemical electrode deionization: Mechanism, performance, and development prospects. Desalination, 2021, 520, 115336.	8.2	12
121	Tuning vacancy and size of metallic VCx quantum dots for capacitive potassium-ion batteries. Chemical Engineering Journal, 2021, 404, 126315.	12.7	11
122	Amorphous CoS1.4 ultrathin nanosheets/amorphous N-doped carbon nanobox: A dual-amorphous confined structure for superior potassium storage. Journal of Power Sources, 2021, 506, 230117.	7.8	11
123	CoSe ₂ /N-doped carbon porous nanoframe as an anode material for potassium-ion storage. Nanotechnology, 2020, 31, 395403.	2.6	10
124	Highâ€Throughput Production of Zrâ€Đoped Li 4 Ti 5 O 12 Modified by Mesoporous Libaf 3 Nanoparticles for Superior Lithium and Potassium Storage. Chemistry - an Asian Journal, 2019, 14, 3181-3187.	3.3	9
125	Simultaneously formed and embedding-type ternary MoSe ₂ /MoO ₂ /nitrogen-doped carbon for fast and stable Na-ion storage. Nanoscale Advances, 2020, 2, 1878-1885.	4.6	9
126	Electrochemical performance of Si@TiN composite anode synthesized in a liquid ammonia for lithium-ion batteries. Materials Chemistry and Physics, 2012, 136, 863-867.	4.0	8

#	Article	IF	CITATIONS
127	A novel ordered SiOxCy film anode fabricated via electrodeposition in air for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2467.	10.3	8
128	Twoâ€Phase Colloidal Synthesis of Amorphous Ironâ€Đoped Manganese Phosphate Hollow Nanospheres for Efficient Water Oxidation. Advanced Sustainable Systems, 2020, 4, 2000128.	5.3	8
129	Scalable synthesis of ultrasmall SnO 2 nanocrystals in carbon conductive matrices: High loading and excellent electrochemical performance. Journal of Alloys and Compounds, 2016, 686, 122-129.	5.5	7
130	Short-brush NiFeOxHy films and the Pt derivative as high-performance electrode materials for efficient electrocatalytic water splitting. Applied Surface Science, 2022, 574, 151636.	6.1	7
131	Nanomesh: Unprecedented Synthesis of Holey 2D Layered Double Hydroxide Nanomesh for Enhanced Oxygen Evolution (Adv. Energy Mater. 1/2019). Advanced Energy Materials, 2019, 9, 1970003.	19.5	5
132	Oxygen defect chemistry for the reversible transformation of titanates for sizeable potassium storage. Journal of Materials Chemistry A, 2020, 8, 17550-17557.	10.3	5
133	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	4.9	4
134	The effect of silver current collector on metal oxide infiltrated La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 /Ce 0.9 Gd 0.1 O 2 in solid oxide fuel cells application. Nano Structures Nano Objects, 2017, 12, 91-97.	3.5	3
135	Electrocatalysis for Continuous Multiâ€Step Reactions in Quasiâ€Solidâ€State Electrolytes Towards Highâ€Energy and Longâ€Life Aluminum–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	2.0	3
136	FeWO4: An Anode Material for Sodium-Ion Batteries. , 2014, , 899-905.		0
137	Facile Synthesis of α-Fe2O3 Nanorods Derived from α-FeOOH Nanorods and Its Application as Anode Materials for Rechargeable Sodium-Ion Batteries. , 2014. , 883-890.		0