Yiying Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2088094/yiying-wu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,696 146 132 54 h-index g-index citations papers 24,387 146 10.5 7.01 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
132	Achieving ultralong cycle life graphite binary intercalation in intermediate-concentration ether-based electrolyte for potassium-ion batteries. <i>Carbon</i> , 2022 , 196, 229-235	10.4	2
131	Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18989-18996	16.4	13
130	Single Potassium-Ion Conducting Polymer Electrolytes: Preparation, Ionic Conductivities, and Electrochemical Stability. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4156-4164	6.1	4
129	A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7891-7896	16.4	5
128	Vibrational Spectroscopy of Beam-Sensitive Materials in the Transmission Electron Microscope. <i>Microscopy and Microanalysis</i> , 2021 , 27, 592-594	0.5	
127	Dirhodium(II,II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1610-1617	16.4	9
126	Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopant-Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency. <i>Angewandte Chemie</i> , 2021 , 133, 6364-6369	3.6	8
125	Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopant-Free Hole Transporting Material for Stable Perovskite Solar Cells with >21 % Efficiency. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6294-6299	16.4	38
124	Antiperovskite KOI for K-Ion Solid State Electrolyte. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7120	0 <i>6</i> 7.4/26	7
123	Predictive Design Model for Low-Dimensional Organic-Inorganic Halide Perovskites Assisted by Machine Learning. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12766-12776	16.4	16
122	Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 41628-41636	9.5	7
121	Unusual Melting Trend in an Alkali Asymmetric Sulfonamide Salt Series: Single-Crystal Analysis and Modeling. <i>Inorganic Chemistry</i> , 2021 , 60, 14679-14686	5.1	О
120	Designing Potassium Battery Salts through a Solvent-in-Anion Concept for Concentrated Electrolytes and Mimicking Solvation Structures. <i>Chemistry of Materials</i> , 2020 , 32, 10423-10434	9.6	8
119	Building a Reactive Armor Using S-Doped Graphene for Protecting Potassium Metal Anodes from Oxygen Crossover in KD2 Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1788-1793	20.1	16
118	Superoxide-Based K-O Batteries: Highly Reversible Oxygen Redox Solves Challenges in Air Electrodes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11629-11640	16.4	24
117	From K-O to K-Air Batteries: Realizing Superoxide Batteries on the Basis of Dry Ambient Air. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10498-10501	16.4	21
116	Anthraquinone Redox Relay for Dye-Sensitized Photo-electrochemical H O Production. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10904-10908	16.4	16

(2019-2020)

115	A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells. <i>Science China Chemistry</i> , 2020 , 63, 777-784	7.9	9
114	[Mo2O2S8]2ြkmall molecule dimer as a basis for hydrogen evolution reaction (HER) catalyst materials. <i>SN Applied Sciences</i> , 2020 , 2, 1	1.8	3
113	A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries. <i>Molecular Systems Design and Engineering</i> , 2020 , 5, 97-101	4.6	23
112	Photoelectrochemical H2O2 Production from Oxygen Reduction. ACS Symposium Series, 2020, 93-109	0.4	
111	A Graphite Intercalation Composite as the Anode for the Potassium-Ion Oxygen Battery in a Concentrated Ether-Based Electrolyte. <i>ACS Applied Materials & Concentrated Ether-Based Electrolyte</i> . <i>ACS Applied Materials & Concentrated Ether-Based Electrolyte</i> . <i>ACS Applied Materials & Concentrated Ether-Based Electrolyte</i> .	9.5	7
110	Ambient Pressure X-ray Photoelectron Spectroscopy Investigation of Thermally Stable Halide Perovskite Solar Cells via Post-Treatment. <i>ACS Applied Materials & Description (Materials & Description </i>	3 ^{.5}	10
109	Pursuing graphite-based K-ion O2 batteries: a lesson from Li-ion batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 3656-3662	35.4	11
108	Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. <i>Energy Storage Materials</i> , 2020 , 24, 319-328	19.4	85
107	From K-O2 to K-Air Batteries: Realizing Superoxide Batteries on the Basis of Dry Ambient Air. <i>Angewandte Chemie</i> , 2020 , 132, 10584-10587	3.6	8
106	Anthraquinone Redox Relay for Dye-Sensitized Photo-electrochemical H2O2 Production. <i>Angewandte Chemie</i> , 2020 , 132, 10996-11000	3.6	4
105	Localized High-Concentration Electrolytes Boost Potassium Storage in High-Loading Graphite. <i>Advanced Energy Materials</i> , 2019 , 9, 1902618	21.8	86
104	Artificial Solid-Electrolyte Interphase Enabled High-Capacity and Stable Cycling Potassium Metal Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1902697	21.8	42
103	Capillary Encapsulation of Metallic Potassium in Aligned Carbon Nanotubes for Use as Stable Potassium Metal Anodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1901427	21.8	67
102	An Indacenodithieno[3,2-b]thiophene-Based Organic Dye for Solid-State p-Type Dye-Sensitized Solar Cells. <i>ChemSusChem</i> , 2019 , 12, 3243-3248	8.3	8
101	Excimer-Mediated Intermolecular Charge Transfer in Self-Assembled Donor-Acceptor Dyes on Metal Oxides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8727-8731	16.4	16
100	Dye-sensitized photocathodes for oxygen reduction: efficient HO production and aprotic redox reactions. <i>Chemical Science</i> , 2019 , 10, 5519-5527	9.4	16
99	Anchoring an Artificial Protective Layer To Stabilize Potassium Metal Anode in Rechargeable K-O Batteries. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	34
98	Decoupling pH Dependence of Flat Band Potential in Aqueous Dye-Sensitized Electrodes. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8681-8687	3.8	12

97	Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6345-6351	16.4	98
96	Existence of Ligands within Sol-Gel-Derived ZnO Films and Their Effect on Perovskite Solar Cells. <i>ACS Applied Materials & Description of the Color </i>	9.5	17
95	Use of Polarization Curves and Impedance Analyses to Optimize the "Triple-Phase Boundary" in K-O Batteries. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	7
94	Machine Learning for Understanding Compatibility of OrganicIhorganic Hybrid Perovskites with Post-Treatment Amines. <i>ACS Energy Letters</i> , 2019 , 4, 397-404	20.1	39
93	Alkali-Oxygen Batteries Based on Reversible Superoxide Chemistry. <i>Chemistry - A European Journal</i> , 2018 , 24, 17627-17637	4.8	11
92	Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 1828-1833	6.1	53
91	Interfacial design of new generation of dye-sensitized photoelectrochemical cells for water oxidation. <i>Science China Chemistry</i> , 2018 , 61, 1203-1204	7.9	7
90	Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11577-11580	16.4	70
89	The Long-Term Stability of KO in K-O Batteries. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1227-1231	16.4	48
88	The Long-Term Stability of KO2 in K-O2 Batteries. <i>Angewandte Chemie</i> , 2018 , 130, 1241-1245	3.6	27
87	Chemical Synthesis of K2S2 and K2S3 for Probing Electrochemical Mechanisms in KB Batteries. <i>ACS Energy Letters</i> , 2018 , 3, 2858-2864	20.1	47
86	Potassium Superoxide: A Unique Alternative for Metal-Air Batteries. <i>Accounts of Chemical Research</i> , 2018 , 51, 2335-2343	24.3	72
85	Simultaneous Stabilization of Potassium Metal and Superoxide in K-O Batteries on the Basis of Electrolyte Reactivity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10864-10867	16.4	61
84	Simultaneous Stabilization of Potassium Metal and Superoxide in KD2 Batteries on the Basis of Electrolyte Reactivity. <i>Angewandte Chemie</i> , 2018 , 130, 11030-11033	3.6	10
83	MoS2 as a long-life host material for potassium ion intercalation. <i>Nano Research</i> , 2017 , 10, 1313-1321	10	212
82	Electrocatalytic Properties of Cuprous Delafossite Oxides for the Alkaline Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2017 , 9, 3837-3842	5.2	5
81	Bilayer Dye Protected Aqueous Photocathodes for Tandem Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 8787-8795	3.8	21
80	Anion-Redox Mechanism of MoO(S)(2,2@bipyridine) for Electrocatalytic Hydrogen Production. Journal of the American Chemical Society, 2017, 139, 4342-4345	16.4	24

(2015-2017)

79	Electron Transfer Kinetics of a Series of Bilayer Triphenylamine®ligothiophene®erylenemonoimide Sensitizers for Dye-Sensitized NiO. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 20720-20728	3.8	11
78	Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9475-9478	16.4	284
77	Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O Batteries. <i>ACS Applied Materials & Date of the Action of the Action Section</i> 10 pt 10	9.5	45
76	Greatly Enhanced Anode Stability in K-Oxygen Batteries with an In Situ Formed Solvent- and Oxygen-Impermeable Protection Layer. <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	31
75	pH-Tuning a Solar Redox Flow Battery for Integrated Energy Conversion and Storage. <i>ACS Energy Letters</i> , 2016 , 1, 578-582	20.1	43
74	Concentrated Electrolyte for the Sodium Dxygen Battery: Solvation Structure and Improved Cycle Life. <i>Angewandte Chemie</i> , 2016 , 128, 15536-15540	3.6	16
73	Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 15310-15314	16.4	82
72	Exploring Thermal Properties of M0S2 Using In Situ Quantitative STEM. <i>Microscopy and Microanalysis</i> , 2016 , 22, 912-913	0.5	
71	Solar-powered electrochemical energy storage: an alternative to solar fuels. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2766-2782	13	92
70	Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production. Journal of the American Chemical Society, 2016 , 138, 1174-9	16.4	106
69	Tunable Molecular MoS2 Edge-Site Mimics for Catalytic Hydrogen Production. <i>Inorganic Chemistry</i> , 2016 , 55, 3960-6	5.1	39
68	[MoO(S)L] (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoS-Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13	72 <mark>6-13</mark> 7	73 ³ 1 ⁰
67	Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6857-61	16.4	33
66	2H-CuScO2 Prepared by Low-Temperature Hydrothermal Methods and Post-Annealing Effects on Optical and Photoelectrochemical Properties. <i>Inorganic Chemistry</i> , 2015 , 54, 5519-26	5.1	20
65	Investigating dendrites and side reactions in sodium-oxygen batteries for improved cycle lives. <i>Chemical Communications</i> , 2015 , 51, 7665-8	5.8	85
64	Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. <i>ACS Applied Materials</i> & Amp; Interfaces, 2015 , 7, 26158-66	9.5	197
63	Dimeric [Mo2S12]2lCluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis. <i>Angewandte Chemie</i> , 2015 , 127, 15396-15400	3.6	30
62	Dye-Controlled Interfacial Electron Transfer for High-Current Indium Tin Oxide Photocathodes. Angewandte Chemie, 2015, 127, 6961-6965	3.6	3

61	Dimeric [Mo2 S12](2-) Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15181-5	16.4	128
60	p-type doping of MoS2 thin films using Nb. <i>Applied Physics Letters</i> , 2014 , 104, 092104	3.4	236
59	Electron transport in large-area epitaxial MoS2 2014 ,		1
58	Cu(I)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5026-33	3.6	103
57	A double-acceptor as a superior organic dye design for p-type DSSCs: high photocurrents and the observed light soaking effect. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26103-11	3.6	50
56	Understanding side reactions in K-O2 batteries for improved cycle life. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 19299-307	9.5	100
55	Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. <i>Nature Communications</i> , 2014 , 5, 5111	17.4	178
54	Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. <i>Journal of Alloys and Compounds</i> , 2014 , 591, 275-279	5.7	68
53	Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. <i>Inorganic Chemistry</i> , 2014 , 53, 5845-51	5.1	54
52	Molecular Orbital Engineering of a Panchromatic Cyclometalated Ru(II) Dye for p-Type Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16518-16525	3.8	31
51	Photostable p-type dye-sensitized photoelectrochemical cells for water reduction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11696-9	16.4	176
50	Photoinduced Electron Transfer Dynamics of Cyclometalated Ruthenium (II)Naphthalenediimide Dyad at NiO Photocathode. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18315-18324	3.8	43
49	Low frequency noise in chemical vapor deposited MoS2 2013 ,		4
48	A low-overpotential potassium-oxygen battery based on potassium superoxide. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2923-6	16.4	265
47	Large area single crystal (0001) oriented MoS2. Applied Physics Letters, 2013, 102, 252108	3.4	178
46	Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells. <i>ACS Applied Materials & mp; Interfaces</i> , 2013 , 5, 8641-8	9.5	64
45	Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 26239-26246	3.8	85
44	The effect of an atomically deposited layer of alumina on NiO in P-type dye-sensitized solar cells. <i>Langmuir</i> , 2012 , 28, 950-6	4	62

43	Synthesis, Photophysics, and Photovoltaic Studies of Ruthenium Cyclometalated Complexes as Sensitizers for p-Type NiO Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16854-	18863	76
42	Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells. <i>ACS Applied Materials & Description of the Property of th</i>	9.5	108
41	p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1074-8	6.4	140
40	Sonochemical synthesis of copper hydride (CuH). <i>Chemical Communications</i> , 2012 , 48, 1302-4	5.8	28
39	NANOCRYSTALLINE OXIDE SEMICONDUCTORS FOR DYE-SENSITIZED SOLAR CELLS 2011 , 127-173		
38	p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry C, 2011 , 115, 25109-25114	3.8	90
37	Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. <i>Nano Research</i> , 2011 , 4, 124-130	10	34
36	Linker effect in organic donor deceptor dyes for p-type NiO dye sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 2818	35.4	104
35	Electrocatalytic Activity of Graphene Multilayers toward I \$\textit{D} 3 \textsup Effect of Preparation Conditions and Polyelectrolyte Modification. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15857-15861	3.8	60
34	Photoelectrochemical Study of the Ilmenite Polymorph of CdSnO3 and Its Photoanodic Application in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6802-6807	3.8	39
33	Critical Role of Screw Dislocation in the Growth of Co(OH)2Nanowires as Intermediates for Co3O4Nanowire Growth. <i>Chemistry of Materials</i> , 2010 , 22, 5537-5542	9.6	51
32	Ni(x)Co(3-x)O(4) nanowire arrays for electrocatalytic oxygen evolution. <i>Advanced Materials</i> , 2010 , 22, 1926-9	24	758
31	Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. <i>Nano Research</i> , 2009 , 2, 54-60	10	44
30	Mesoporous Nb-Doped TiO2 as Pt Support for Counter Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009 , 113, 7456-7460	3.8	54
29	Photoelectrochemical study of the band structure of Zn(2)SnO(4) prepared by the hydrothermal method. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3216-24	16.4	214
28	Nanoscale design to enable the revolution in renewable energy. <i>Energy and Environmental Science</i> , 2009 , 2, 559	35.4	311
27	Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn, Cd, Ni) Hydroxide/Oxide Nanostructures. <i>Chemistry of Materials</i> , 2008 , 20, 567-576	9.6	138
26	Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. <i>Nano Letters</i> , 2008 , 8, 265-70	11.5	1167

25	Assembly of spherical micelles in 2D physical confinements and their replication into mesoporous silica nanorods. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4558		22
24	Zinc stannate (Zn2SnO4) dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2007 , 129, 4162-3	16.4	333
23	Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15932-8	3.4	549
22	Characterization of heat transfer along a silicon nanowire using thermoreflectance technique. <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 67-74	2.6	27
21	Engineering Nanostructures for Single-Molecule Surface-Enhanced Raman Spectroscopy. <i>Israel Journal of Chemistry</i> , 2006 , 46, 283-291	3.4	1
20	Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14258-9	16.4	315
19	Engineering Nanostructures for Single-Molecule Surface-Enhanced Raman Spectroscopy. <i>Israel Journal of Chemistry</i> , 2006 , 46, 283-291	3.4	
18	Single-Crystal Mesoporous Silica Ribbons. <i>Angewandte Chemie</i> , 2005 , 117, 336-340	3.6	5
17	Composite mesostructures by nano-confinement. <i>Nature Materials</i> , 2004 , 3, 816-22	27	599
16	Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays. <i>Nano Letters</i> , 2004 , 4, 2337-2342	11.5	190
15	Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. <i>Chemical Communications</i> , 2004 , 1670-1	5.8	130
14	Single-crystal mesoporous silica ribbons. <i>Angewandte Chemie - International Edition</i> , 2004 , 44, 332-6	16.4	48
13	Thermal conductivity of Si/SiGe superlattice nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 3186-3188	3.4	317
12	Thermal conductivity of individual silicon nanowires. <i>Applied Physics Letters</i> , 2003 , 83, 2934-2936	3.4	1342
11	Fabrication of silica nanotube arrays from vertical silicon nanowire templates. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5254-5	16.4	240
10	Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. <i>Chemistry - A European Journal</i> , 2002 , 8, 1260-8	4.8	344
9	INORGANIC SEMICONDUCTOR NANOWIRES. International Journal of Nanoscience, 2002, 01, 1-39	0.6	141
8	Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires. <i>Nano Letters</i> , 2002 , 2, 83-8	611.5	853

LIST OF PUBLICATIONS

7	Room-temperature ultraviolet nanowire nanolasers. <i>Science</i> , 2001 , 292, 1897-9	33.3	7931	
6	Direct Observation of VaporliquidBolid Nanowire Growth. <i>Journal of the American Chemical Society</i> , 2001 , 123, 3165-3166	16.4	874	
5	Metal nanowire formation using Mo(3)Se(3)(-) as reducing and sacrificing templates. <i>Journal of the American Chemical Society</i> , 2001 , 123, 10397-8	16.4	78	
4	Germanium/carbon coreBheath nanostructures. <i>Applied Physics Letters</i> , 2000 , 77, 43-45	3.4	75	
3	Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials, 2000, 12, 605-607	9.6	404	
2	Measurements of Bi/sub 2/Te/sub 3/ nanowire thermal conductivity and Seebeck coefficient		7	
1	Antiperovskite Superionic Conductors: A Critical Review. ACS Materials Au,		8	