Takafumi Yokota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2087966/publications.pdf

Version: 2024-02-01

42 papers 1,917 citations

331670 21 h-index 315739 38 g-index

43 all docs

43 docs citations

times ranked

43

2455 citing authors

#	Article	IF	CITATIONS
1	A forodesine-based regimen as a therapeutic option for PTCL-NOS with Central nervous system involvement. Leukemia and Lymphoma, 2022, 63, 1013-1015.	1.3	O
2	Inotuzumab ozogamicin and blinatumomab sequential therapy for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia Research Reports, 2022, 17, 100294.	0.4	1
3	Special AT-Rich Sequence-Binding Protein 1 Supports Survival and Maturation of Naive B Cells Stimulated by B Cell Receptors. Journal of Immunology, 2022, , ji2101097.	0.8	4
4	Ectonucleotidase CD39 is highly expressed on ATLL cells and is responsible for their immunosuppressive function. Leukemia, 2021, 35, 107-118.	7.2	18
5	Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions. Journal of Experimental Medicine, 2021, 218, .	8.5	29
6	Autonomous $TGF\hat{l}^2$ signaling induces phenotypic variation in human acute myeloid leukemia. Stem Cells, 2021, 39, 723-736.	3.2	2
7	Autonomous $TGF\hat{l}^2$ signaling induces phenotypic variation in human acute myeloid leukemia. Stem Cells, 2021, 39, 723-736.	3.2	9
8	Wholeâ€exome sequencing identified mutational profile of a case with Tâ€cell chronic lymphocytic leukemia. Clinical Case Reports (discontinued), 2020, 8, 2251-2254.	0.5	1
9	"Hierarchy―and "Holacracy― A Paradigm of the Hematopoietic System. Cells, 2019, 8, 1138.	4.1	12
10	Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports, 2019, 13, 992-1005.	4.8	19
11	Identification of MS4A3 as a reliable marker for early myeloid differentiation in human hematopoiesis. Biochemical and Biophysical Research Communications, 2018, 495, 2338-2343.	2.1	19
12	Variable SATB1 Levels Regulate Hematopoietic Stem Cell Heterogeneity with Distinct Lineage Fate. Cell Reports, 2018, 23, 3223-3235.	6.4	26
13	Genetic abnormalities associated with acute lymphoblastic leukemia. Cancer Science, 2016, 107, 721-725.	3.9	36
14	ESAM is a novel human hematopoietic stem cell marker associated with aÂsubset of human leukemias. Experimental Hematology, 2016, 44, 269-281.e1.	0.4	24
15	Endothelial Cell-Selective Adhesion Molecule Expression in Hematopoietic Stem/Progenitor Cells Is Essential for Erythropoiesis Recovery after Bone Marrow Injury. PLoS ONE, 2016, 11, e0154189.	2.5	8
16	Identification of osteoblast stimulating factor 5 as a negative regulator in the B-lymphopoietic niche. Experimental Hematology, 2015, 43, 963-973.e4.	0.4	5
17	Estrogenâ€inducible sFRP5 inhibits early Bâ€lymphopoiesis in vivo, but not during pregnancy. European Journal of Immunology, 2015, 45, 1390-1401.	2.9	7
18	Guest editorial: Molecular mechanisms of lymphocyte development: recent findings. International Journal of Hematology, 2014, 100, 218-219.	1.6	1

#	Article	IF	CITATIONS
19	Role of tissue-specific AT-rich DNA sequence-binding proteins in lymphocyte differentiation. International Journal of Hematology, 2014, 100, 238-245.	1.6	17
20	Limiting Dilution Assays to Determine Frequencies of Lymphohematopoietic Progenitors. Bio-protocol, 2014, 4, .	0.4	0
21	The Satb1 Protein Directs Hematopoietic Stem Cell Differentiation toward Lymphoid Lineages. Immunity, 2013, 38, 1105-1115.	14.3	100
22	Complementary regulation of early B-lymphoid differentiation by genetic and epigenetic mechanisms. International Journal of Hematology, 2013, 98, 382-389.	1.6	9
23	Early events in lymphopoiesis. Current Opinion in Hematology, 2013, 20, 265-272.	2.5	14
24	Canonical HSC Markers and Recent Achievements. , 2013, , .		0
25	The Endothelial Antigen ESAM Monitors Hematopoietic Stem Cell Status between Quiescence and Self-Renewal. Journal of Immunology, 2012, 189, 200-210.	0.8	30
26	The endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice. Blood, 2009, 113, 2914-2923.	1.4	68
27	Soluble Frizzled-Related Protein 1 Is Estrogen Inducible in Bone Marrow Stromal Cells and Suppresses the Earliest Events in Lymphopoiesis. Journal of Immunology, 2008, 181, 6061-6072.	0.8	38
28	Bone Marrow Lacks a Transplantable Progenitor for Smooth Muscle Type α-Actin-Expressing Cells. Stem Cells, 2006, 24, 13-22.	3.2	63
29	Tracing the first waves of lymphopoiesis in mice. Development (Cambridge), 2006, 133, 2041-2051.	2.5	86
30	Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood, 2005, 106, 4093-4101.	1.4	86
31	Lymphoid progenitors and primary routes to becoming cells of the immune system. Current Opinion in Immunology, 2005, 17, 100-107.	5.5	60
32	Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids. International Immunology, 2005, 17, 501-511.	4.0	61
33	In Vitro Differentiation and Measurement of B Cell Progenitor Activity in Culture. , 2005, Chapter 22, Unit 22F.2.		9
34	Unique Properties of Fetal Lymphoid Progenitors Identified According to RAG1 Gene Expression. Immunity, 2003, 19, 365-375.	14.3	72
35	Adiponectin, a Fat Cell Product, Influences the Earliest Lymphocyte Precursors in Bone Marrow Cultures by Activation of the Cyclooxygenase-Prostaglandin Pathway in Stromal Cells. Journal of Immunology, 2003, 171, 5091-5099.	0.8	127
36	B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood, 2003, 101, 576-584.	1.4	111

3

#	Article	lF	CITATION
37	Lymphoid lineage cells in adult murine bone marrow diverge from those of other blood cells at an early, hormone-sensitive stage. Seminars in Immunology, 2002, 14, 385-394.	5.6	24
38	Transcription from the RAG1 Locus Marks the Earliest Lymphocyte Progenitors in Bone Marrow. Immunity, 2002, 17, 117-130.	14.3	395
39	Nature or nurture? Steady-state lymphocyte formation in adults does not recapitulate ontogeny. Immunological Reviews, 2002, 187, 116-125.	6.0	65
40	Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. Journal of Clinical Investigation, 2002, 109, 1303-1310.	8.2	63
41	Growth-Supporting Activities of Fibronectin on Hematopoietic Stem/Progenitor Cells In Vitro and In Vivo: Structural Requirement for Fibronectin Activities of CS1 and Cell-Binding Domains. Blood, 1998, 91, 3263-3272.	1.4	101
42	Growth-Supporting Activities of Fibronectin on Hematopoietic Stem/Progenitor Cells In Vitro and In Vivo: Structural Requirement for Fibronectin Activities of CS1 and Cell-Binding Domains. Blood, 1998, 91, 3263-3272.	1.4	97