Cristina Müller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2087538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Unique Matched Quadruplet of Terbium Radioisotopes for PET and SPECT and for α- and β ^{â``} -Radionuclide Therapy: An In Vivo Proof-of-Concept Study with a New Receptor-Targeted Folate Derivative. Journal of Nuclear Medicine, 2012, 53, 1951-1959.	2.8	189
2	Folic Acid Conjugates for Nuclear Imaging of Folate Receptor–Positive Cancer. Journal of Nuclear Medicine, 2011, 52, 1-4.	2.8	174
3	Promising Prospects for ⁴⁴ Sc-/ ⁴⁷ Sc-Based Theragnostics: Application of ⁴⁷ Sc for Radionuclide Tumor Therapy in Mice. Journal of Nuclear Medicine, 2014, 55, 1658-1664.	2.8	163
4	DOTA Conjugate with an Albumin-Binding Entity Enables the First Folic Acid–Targeted ¹⁷⁷ Lu-Radionuclide Tumor Therapy in Mice. Journal of Nuclear Medicine, 2013, 54, 124-131.	2.8	143
5	44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Research, 2017, 7, 9.	1.1	140
6	Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. British Journal of Radiology, 2018, 91, 20180074.	1.0	120
7	Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Molecular Pharmaceutics, 2018, 15, 934-946.	2.3	116
8	Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1919-1930.	3.3	109
9	Promises of Cyclotron-Produced ⁴⁴ Sc as a Diagnostic Match for Trivalent β ^{â^`} -Emitters: In Vitro and In Vivo Study of a ⁴⁴ Sc-DOTA-Folate Conjugate. Journal of Nuclear Medicine, 2013, 54, 2168-2174.	2.8	103
10	Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 2297-2306.	2.3	97
11	Cyclotron production of 44Sc: From bench to bedside. Nuclear Medicine and Biology, 2015, 42, 745-751.	0.3	91
12	Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 476-485.	3.3	86
13	A "Click Chemistry―Approach to the Efficient Synthesis of Multiple Imaging Probes Derived from a Single Precursor. Bioconjugate Chemistry, 2009, 20, 1940-1949.	1.8	82
14	SPECT Study of Folate Receptor-Positive Malignant and Normal Tissues in Mice Using a Novel ^{99m} Tc-Radiofolate. Journal of Nuclear Medicine, 2008, 49, 310-317.	2.8	73
15	Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 5.	1.8	72
16	First Clinicopathologic Evidence of a Non–PSMA-Related Uptake Mechanism for ⁶⁸ Ga-PSMA-11 in Salivary Glands. Journal of Nuclear Medicine, 2019, 60, 1270-1276.	2.8	70
17	Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals, 2014, 7, 353-365.	1.7	65
18	Prospects in Folate Receptor-Targeted Radionuclide Therapy. Frontiers in Oncology, 2013, 3, 249.	1.3	63

#	Article	IF	CITATIONS
19	Folate Based Radiopharmaceuticals for Imaging and Therapy of Cancer and Inflammation. Current Pharmaceutical Design, 2012, 18, 1058-1083.	0.9	61
20	Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with ¹⁵² Tb-DOTATOC. Dalton Transactions, 2017, 46, 14638-14646.	1.6	61
21	Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. Journal of Organometallic Chemistry, 2004, 689, 4712-4721.	0.8	60
22	Future prospects for SPECT imaging using the radiolanthanide terbium-155 — production and preclinical evaluation in tumor-bearing mice. Nuclear Medicine and Biology, 2014, 41, e58-e65.	0.3	60
23	Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals, 2017, 10, 72.	1.7	60
24	Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. Journal of Nuclear Medicine, 2006, 47, 1153-60.	2.8	60
25	Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis and Rheumatism, 2011, 63, 1898-1907.	6.7	57
26	Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 12.	1.8	56
27	A ^{99m} Tc-Labeled Ligand of Carbonic Anhydrase IX Selectively Targets Renal Cell Carcinoma In Vivo. Journal of Nuclear Medicine, 2016, 57, 943-949.	2.8	54
28	Folate-Based Radiotracers for PET Imaging—Update and Perspectives. Molecules, 2013, 18, 5005-5031.	1.7	53
29	44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations. EJNMMI Radiopharmacy and Chemistry, 2017, 1, 8.	1.8	53
30	Pemetrexed Improves Tumor Selectivity of ¹¹¹ In-DTPA-Folate in Mice with Folate Receptor–Positive Ovarian Cancer. Journal of Nuclear Medicine, 2008, 49, 623-629.	2.8	52
31	First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced ⁴⁴ Sc-DOTATOC: A Proof-of-Concept Study. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 124-132.	0.7	52
32	Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics, 2020, 10, 1678-1693.	4.6	52
33	Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 938-946.	3.3	49
34	Alpha-PET for Prostate Cancer: Preclinical investigation using 149Tb-PSMA-617. Scientific Reports, 2019, 9, 17800.	1.6	49
35	Pharmacological upregulation of prostateâ€specific membrane antigen (PSMA) expression in prostate cancer cells. Prostate, 2018, 78, 758-765.	1.2	48
36	Synthesis and in Vitro/in Vivo Evaluation of Novel 99mTc(CO)3-Folates. Bioconjugate Chemistry, 2006, 17, 797-806.	1.8	46

3

#	Article	IF	CITATIONS
37	Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharmacy and Chemistry, 2017, 2, 14.	1.8	45
38	Preclinical Comparison of Albumin-Binding Radiofolates: Impact of Linker Entities on the in Vitro and in Vivo Properties. Molecular Pharmaceutics, 2017, 14, 523-532.	2.3	44
39	Radiosynthesis and Preclinical Evaluation of 3′-Aza-2′-[¹⁸ F]fluorofolic Acid: A Novel PET Radiotracer for Folate Receptor Targeting. Bioconjugate Chemistry, 2013, 24, 205-214.	1.8	43
40	Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Research, 2016, 6, 13.	1.1	43
41	Imaging quality of 44Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET. Applied Radiation and Isotopes, 2016, 110, 129-133.	0.7	43
42	Tumor targeting using 67Ga-DOTA-Bz-folate — investigations of methods to improve the tissue distribution of radiofolates. Nuclear Medicine and Biology, 2011, 38, 715-723.	0.3	42
43	First-in-Humans Application of ¹⁶¹ Tb: A Feasibility Study Using ¹⁶¹ Tb-DOTATOC. Journal of Nuclear Medicine, 2021, 62, 1391-1397.	2.8	42
44	⁶⁴ Cu- and ⁶⁸ Ga-Based PET Imaging of Folate Receptor-Positive Tumors: Development and Evaluation of an Albumin-Binding NODAGA–Folate. Molecular Pharmaceutics, 2016, 13, 1979-1987.	2.3	41
45	Preclinical in vivo application of 152Tb-DOTANOC: a radiolanthanide for PET imaging. EJNMMI Research, 2016, 6, 35.	1.1	40
46	Preclinical investigations and first-in-human application of 152Tb-PSMA-617 for PET/CT imaging of prostate cancer. EJNMMI Research, 2019, 9, 68.	1.1	39
47	Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nuclear Medicine and Biology, 2015, 42, 770-779.	0.3	38
48	Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules, 2020, 25, 4706.	1.7	38
49	Biodistribution and dosimetry of a single dose of albumin-binding ligand [177Lu]Lu-PSMA-ALB-56 in patients with mCRPC. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 893-903.	3.3	36
50	Imaging Atherosclerotic Plaque Inflammation via Folate Receptor Targeting Using a Novel ¹⁸ F-Folate Radiotracer. Molecular Imaging, 2014, 13, 7290.2013.00074.	0.7	35
51	Combination of terbium-161 with somatostatin receptor antagonists—a potential paradigm shift for the treatment of neuroendocrine neoplasms. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1113-1126.	3.3	32
52	From Bench to Bedside—The Bad Berka Experience With First-in-Human Studies. Seminars in Nuclear Medicine, 2019, 49, 422-437.	2.5	30
53	Effects of the Antifolates Pemetrexed and CB3717 on the Tissue Distribution of 99mTc-EC20 in Xenografted and Syngeneic Tumor-Bearing Mice. Molecular Pharmaceutics, 2010, 7, 597-604.	2.3	28
54	Design and Preclinical Evaluation of an Albumin-Binding PSMA Ligand for ⁶⁴ Cu-Based PET Imaging. Molecular Pharmaceutics, 2018, 15, 5556-5564.	2.3	28

#	Article	IF	CITATIONS
55	Synthesis, Radiolabeling, and Characterization of Plasma Protein-Binding Ligands: Potential Tools for Modulation of the Pharmacokinetic Properties of (Radio)Pharmaceuticals. Bioconjugate Chemistry, 2017, 28, 2372-2383.	1.8	27
56	18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Disease—A Proof-of-Concept Study. Frontiers in Immunology, 2019, 10, 2724.	2.2	27
57	Folate Receptor–Targeted Single-Photon Emission Computed Tomography/Computed Tomography to Detect Activated Macrophages in Atherosclerosis: Can It Distinguish Vulnerable from Stable Atherosclerotic Plaques?. Molecular Imaging, 2014, 13, 7290.2013.00061.	0.7	26
58	Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nuclear Medicine and Biology, 2017, 45, 15-21.	0.3	26
59	Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nuclear Medicine and Biology, 2015, 42, 226-233.	0.3	25
60	Determination of 161Tb half-life by three measurement methods. Applied Radiation and Isotopes, 2020, 159, 109085.	0.7	25
61	Improved PET Imaging of Tumors in Mice Using a Novel 18 F-Folate Conjugate with an Albumin-Binding Entity. Molecular Imaging and Biology, 2013, 15, 649-654.	1.3	24
62	Comparative Studies of Three Pairs of \hat{I}_{\pm} - and \hat{I}_{3} -Conjugated Folic Acid Derivatives Labeled with Fluorine-18. Bioconjugate Chemistry, 2016, 27, 74-86.	1.8	24
63	Therapeutic Potential of 47Sc in Comparison to 177Lu and 90Y: Preclinical Investigations. Pharmaceutics, 2019, 11, 424.	2.0	24
64	Radiation dosimetry of 18F-AzaFol: A first in-human use of a folate receptor PET tracer. EJNMMI Research, 2020, 10, 32.	1.1	23
65	Dose-dependent effects of (anti)folate preinjection on 99mTc-radiofolate uptake in tumors and kidneys. Nuclear Medicine and Biology, 2007, 34, 603-608.	0.3	22
66	Single Photon Emission Computed Tomography Tracer. Recent Results in Cancer Research, 2013, 187, 65-105.	1.8	20
67	177Lu-EC0800 Combined with the Antifolate Pemetrexed: Preclinical Pilot Study of Folate Receptor Targeted Radionuclide Tumor Therapy. Molecular Cancer Therapeutics, 2013, 12, 2436-2445.	1.9	19
68	Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer. Cancers, 2021, 13, 2011.	1.7	19
69	Imaging atherosclerotic plaque inflammation via folate receptor targeting using a novel 18F-folate radiotracer. Molecular Imaging, 2014, 13, 1-11.	0.7	19
70	Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Research, 2019, 9, 53.	1.1	17
71	Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging. Pharmaceutics, 2021, 13, 536.	2.0	17
72	New 55Co-labeled Albumin-Binding Folate Derivatives as Potential PET Agents for Folate Receptor Imaging. Pharmaceuticals, 2019, 12, 166.	1.7	16

#	Article	IF	CITATIONS
73	Promising potential of [177Lu]Lu-DOTA-folate to enhance tumor response to immunotherapy—a preclinical study using a syngeneic breast cancer model. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 984-994.	3.3	16
74	Diagnostic Versus Therapeutic Doses of [177Lu-DOTA-Tyr3]-Octreotate: Uptake and Dosimetry in Somatostatin Receptor-Positive Tumors and Normal Organs. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 151-159.	0.7	14
75	Implementation of a new separation method to produce qualitatively improved <scp>⁶⁴Cu</scp> . Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 460-470.	0.5	14
76	Expanding the Scope of Pyclen-Picolinate Lanthanide Chelates to Potential Theranostic Applications. Inorganic Chemistry, 2020, 59, 11736-11748.	1.9	14
77	Combined Application of Albumin-Binding [177Lu]Lu-PSMA-ALB-56 and Fast-Cleared PSMA Inhibitors: Optimization of the Pharmacokinetics. Molecular Pharmaceutics, 2020, 17, 2044-2053.	2.3	12
78	Albumin-Binding PSMA Radioligands: Impact of Minimal Structural Changes on the Tissue Distribution Profile. Molecules, 2020, 25, 2542.	1.7	12
79	Production of Mass-Separated Erbium-169 Towards the First Preclinical in vitro Investigations. Frontiers in Medicine, 2021, 8, 643175.	1.2	11
80	A Short-Term Biological Indicator for Long-Term Kidney Damage after Radionuclide Therapy in Mice. Pharmaceuticals, 2017, 10, 57.	1.7	10
81	Reduced 18F-Folate Conjugates as a New Class of PET Tracers for Folate Receptor Imaging. Bioconjugate Chemistry, 2018, 29, 1119-1130.	1.8	10
82	Preclinical evaluation of 5-methyltetrahydrofolate-based radioconjugates—new perspectives for folate receptor–targeted radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 972-983.	3.3	10
83	Impact of the mouse model and molar amount of injected ligand on the tissue distribution profile of PSMA radioligands. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 470-480.	3.3	10
84	Fifty Shades of Scandium: Comparative Study of PET Capabilities Using Sc-43 and Sc-44 with Respect to Conventional Clinical Radionuclides. Diagnostics, 2021, 11, 1826.	1.3	10
85	In Vivo Labeling of Plasma Proteins for Imaging of Enhanced Vascular Permeability in the Lungs. Molecular Pharmaceutics, 2018, 15, 4995-5004.	2.3	9
86	Can Nuclear Imaging of Activated Macrophages with Folic Acid-Based Radiotracers Serve as a Prognostic Means to Identify COVID-19 Patients at Risk?. Pharmaceuticals, 2020, 13, 238.	1.7	9
87	Preclinical investigations using [177Lu]Lu-Ibu-DAB-PSMA toward its clinical translation for radioligand therapy of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3639-3650.	3.3	9
88	Combining Albumin-Binding Properties and Interaction with Pemetrexed to Improve the Tissue Distribution of Radiofolates. Molecules, 2018, 23, 1465.	1.7	8
89	Diastereomerically Pure 6 <i>R</i> - and 6 <i>S</i> -3′-Aza-2′- ¹⁸ F-Fluoro-5-Methyltetrahydrofolates Show Unprecedentedly High Uptake in Folate Receptor–Positive KB Tumors. Journal of Nuclear Medicine, 2019, 60, 135-141.	2.8	8
90	Identification of a PET Radiotracer for Imaging of the Folate Receptor-α: A Potential Tool to Select Patients for Targeted Tumor Therapy, Journal of Nuclear Medicine, 2021, 62, 1475-1481.	2.8	8

#	Article	IF	CITATIONS
91	In Vitro and in Vivo Evaluation of an Innocuous Drug Cocktail To Improve the Quality of Folic Acid Targeted Nuclear Imaging in Preclinical Research. Molecular Pharmaceutics, 2013, 10, 967-974.	2.3	7
92	Design and Evaluation of Novel Albumin-Binding Folate Radioconjugates: Systematic Approach of Varying the Linker Entities. Molecular Pharmaceutics, 2022, 19, 963-973.	2.3	7
93	Preclinical Investigations to Explore the Difference between the Diastereomers [¹⁷⁷ Lu]Lu-SibuDAB and [¹⁷⁷ Lu]Lu-RibuDAB toward Prostate Cancer Therapy. Molecular Pharmaceutics, 2022, 19, 2105-2114.	2.3	7
94	First Phantom-Based Quantitative Assessment of Scandium-44 Using a Commercial PET Device. Frontiers in Physics, 2020, 8, .	1.0	5
95	Combination of Proton Therapy and Radionuclide Therapy in Mice: Preclinical Pilot Study at the Paul Scherrer Institute. Pharmaceutics, 2019, 11, 450.	2.0	4
96	Novel Synthetic Strategies Enable the Efficient Development of Folate Conjugates for Cancer Radiotheranostics. Bioconjugate Chemistry, 2021, 32, 1617-1628.	1.8	3
97	Terbium radionuclides for theranostics. , 2021, , .		0