J Wesley Pike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2086943/publications.pdf

Version: 2024-02-01

117	8,316	53	89
papers	citations	h-index	g-index
117	117	117	7282
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural Organization of the Human Vitamin D Receptor Chromosomal Gene and Its Promoter. Molecular Endocrinology, 1997, 11, 1165-1179.	3.7	339
2	The Vitamin D Receptor and the Syndrome of Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets*. Endocrine Reviews, 1999, 20, 156-188.	20.1	306
3	Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D–induced inhibition of bone mineralization. Journal of Clinical Investigation, 2012, 122, 1803-1815.	8.2	306
4	The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3. Endocrinology and Metabolism Clinics of North America, 2010, 39, 255-269.	3.2	284
5	CARM1 Methylates Chromatin Remodeling Factor BAF155 to Enhance Tumor Progression and Metastasis. Cancer Cell, 2014, 25, 21-36.	16.8	215
6	Activation of Receptor Activator of NF- \hat{l}° B Ligand Gene Expression by 1,25-Dihydroxyvitamin D ₃ Is Mediated through Multiple Long-Range Enhancers. Molecular and Cellular Biology, 2006, 26, 6469-6486.	2.3	208
7	The Human Transient Receptor Potential Vanilloid Type 6 Distal Promoter Contains Multiple Vitamin D Receptor Binding Sites that Mediate Activation by 1,25-Dihydroxyvitamin D3 in Intestinal Cells. Molecular Endocrinology, 2006, 20, 1447-1461.	3.7	189
8	VDR/RXR and TCF4/ \hat{l}^2 -Catenin Cistromes in Colonic Cells of Colorectal Tumor Origin: Impact on c-FOS and c-MYC Gene Expression. Molecular Endocrinology, 2012, 26, 37-51.	3.7	188
9	Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinology and Metabolism Clinics of North America, 2017, 46, 815-843.	3.2	185
10	Molecular Structure of the Rat Vitamin D Receptor Ligand Binding Domain Complexed with 2-Carbon-Substituted Vitamin D3 Hormone Analogues and a LXXLL-Containing Coactivator Peptide,. Biochemistry, 2004, 43, 4101-4110.	2.5	179
11	1,25-Dihydroxyvitamin D3 and 9-cis-Retinoic Acid Act Synergistically to Inhibit the Growth of LNCaP Prostate Cells and Cause Accumulation of Cells in G1*. Endocrinology, 1997, 138, 1491-1497.	2.8	177
12	A potent analog of $1\hat{1}\pm,25$ -dihydroxyvitamin D ₃ selectively induces bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13487-13491.	7.1	173
13	1,25-Dihydroxyvitamin D3 Stimulates Cyclic Vitamin D Receptor/Retinoid X Receptor DNA-Binding, Co-activator Recruitment, and Histone Acetylation in Intact Osteoblasts. Journal of Bone and Mineral Research, 2004, 20, 305-317.	2.8	172
14	The Caudal-Related Homeodomain Protein Cdx-2 Regulates Vitamin D Receptor Gene Expression in the Small Intestine. Journal of Bone and Mineral Research, 1999, 14, 240-247.	2.8	153
15	Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells. Journal of Biological Chemistry, 2016, 291, 17829-17847.	3.4	150
16	Functional Domains of the Human Vitamin D ₃ Receptor Regulate Osteocalcin Gene Expression. Molecular Endocrinology, 1989, 3, 635-644.	3.7	147
17	Enhancers Located within Two Introns of the Vitamin D Receptor Gene Mediate Transcriptional Autoregulation by 1,25-Dihydroxyvitamin D ₃ . Molecular Endocrinology, 2006, 20, 1231-1247.	3.7	140
18	1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB Journal, 2015, 29, 4023-4035.	0.5	139

#	Article	IF	Citations
19	Vitamin D-Binding Protein Influences Total Circulating Levels of 1,25-Dihydroxyvitamin D3 but Does Not Directly Modulate the Bioactive Levels of the Hormone in Vivo. Endocrinology, 2008, 149, 3656-3667.	2.8	132
20	A Downstream Intergenic Cluster of Regulatory Enhancers Contributes to the Induction of CYP24A1 Expression by $1\hat{1}\pm,25$ -Dihydroxyvitamin D3. Journal of Biological Chemistry, 2010, 285, 15599-15610.	3.4	130
21	Multifunctional Enhancers Regulate Mouse and Human Vitamin D Receptor Gene Transcription. Molecular Endocrinology, 2010, 24, 128-147.	3.7	126
22	The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. Journal of Clinical Investigation, 2017, 127, 1146-1154.	8.2	125
23	Androgens Suppress Osteoclast Formation Induced by RANKL and Macrophage-Colony Stimulating Factor. Endocrinology, 2001, 142, 3800-3808.	2.8	121
24	The Osteoblast to Osteocyte Transition: Epigenetic Changes and Response to the Vitamin D ₃ Hormone. Molecular Endocrinology, 2014, 28, 1150-1165.	3.7	113
25	The RUNX2 Cistrome in Osteoblasts. Journal of Biological Chemistry, 2014, 289, 16016-16031.	3.4	112
26	Genome-wide analysis of the VDR/RXR cistrome in osteoblast cells provides new mechanistic insight into the actions of the vitamin D hormone. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 136-141.	2.5	107
27	Fundamentals of vitamin D hormone-regulated gene expression. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 5-11.	2.5	107
28	A Unique Point Mutation in the Human Vitamin D Receptor Chromosomal Gene Confers Hereditary Resistance to 1,25-Dihydroxyvitamin D ₃ . Molecular Endocrinology, 1990, 4, 623-631.	3.7	106
29	A 55-Kilodalton Accessory Factor Facilitates Vitamin D Receptor DNA Binding. Molecular Endocrinology, 1991, 5, 1578-1586.	3.7	105
30	Regulation of target gene expression by the vitamin D receptor - an update on mechanisms. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 45-55.	5.7	102
31	Genomic Determinants of Gene Regulation by 1,25-Dihydroxyvitamin D3 during Osteoblast-lineage Cell Differentiation. Journal of Biological Chemistry, 2014, 289, 19539-19554.	3.4	100
32	Perspectives: The genomic mechanism of action of 1,25-dihydroxyvitamin D3. Journal of Bone and Mineral Research, 1991, 6, 1021-1027.	2.8	98
33	The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3. Rheumatic Disease Clinics of North America, 2012, 38, 13-27.	1.9	93
34	Targeted Deletion of a Distant Transcriptional Enhancer of the Receptor Activator of Nuclear Factor-κB Ligand Gene Reduces Bone Remodeling and Increases Bone Mass. Endocrinology, 2008, 149, 146-153.	2.8	87
35	1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine \hat{l}^2 -synthase. Journal of Bone and Mineral Research, 2011, 26, 2991-3000.	2.8	87
36	1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. Journal of Biological Chemistry, 2015, 290, 18199-18215.	3.4	87

#	Article	IF	CITATIONS
37	Analysis of Osteocalcin Expression in Transgenic Mice Reveals a Species Difference in Vitamin D Regulation of Mouse and Human Osteocalcin Genes. Journal of Bone and Mineral Research, 1997, 12, 1570-1576.	2.8	84
38	2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 Potently Stimulates Gene-specific DNA Binding of the Vitamin D Receptor in Osteoblasts. Journal of Biological Chemistry, 2003, 278, 31756-31765.	3.4	84
39	1,25-Dihydroxyvitamin D3 Regulates the Expression of Low-Density Lipoprotein Receptor-Related Protein 5 via Deoxyribonucleic Acid Sequence Elements Located Downstream of the Start Site of Transcription. Molecular Endocrinology, 2006, 20, 2215-2230.	3.7	81
40	Characterizing Early Events Associated with the Activation of Target Genes by 1,25-Dihydroxyvitamin D3 in Mouse Kidney and Intestine in Vivo. Journal of Biological Chemistry, 2007, 282, 22344-22352.	3.4	81
41	Transcriptional Control of Receptor Activator of Nuclear Factor-κB Ligand by the Protein Kinase A Activator Forskolin and the Transmembrane Glycoprotein 130-Activating Cytokine, Oncostatin M, Is Exerted through Multiple Distal Enhancers. Molecular Endocrinology, 2007, 21, 197-214.	3.7	78
42	Structural Organization of the Human Vitamin D Receptor Chromosomal Gene and Its Promoter. Molecular Endocrinology, 1997, 11, 1165-1179.	3.7	78
43	Evidence for a Role of Prolactin in Calcium Homeostasis: Regulation of Intestinal Transient Receptor Potential Vanilloid Type 6, Intestinal Calcium Absorption, and the 25-Hydroxyvitamin D3 1α Hydroxylase Gene by Prolactin. Endocrinology, 2010, 151, 2974-2984.	2.8	77
44	A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation. Journal of Biological Chemistry, 2017, 292, 17541-17558.	3.4	74
45	1,25-Dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry, 1994, 33, 4300-4311.	2.5	72
46	Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 389-395.	2.5	70
47	Genome-wide principles of gene regulation by the vitamin D receptor and its activating ligand. Molecular and Cellular Endocrinology, 2011, 347, 3-10.	3.2	69
48	Genomic Determinants of Vitamin D-Regulated Gene Expression. Vitamins and Hormones, 2016, 100, 21-44.	1.7	67
49	Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. BoneKEy Reports, 2014, 3, 482.	2.7	60
50	Molecular Actions of 1,25-Dihydroxyvitamin D3 on Genes Involved in Calcium Homeostasis. Journal of Bone and Mineral Research, 2007, 22, V16-V19.	2.8	59
51	Dexamethasone Enhances $1\hat{l}\pm$,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription. Journal of Biological Chemistry, 2011, 286, 36228-36237.	3.4	57
52	1,25-Dihydroxyvitamin D3 and 9-cis-Retinoic Acid Act Synergistically to Inhibit the Growth of LNCaP Prostate Cells and Cause Accumulation of Cells in G1. Endocrinology, 1997, 138, 1491-1497.	2.8	56
53	Genetic Defects of the 1,25-Dihydroxyvitamin D ₃ Receptor. Journal of Receptors and Signal Transduction, 1991, 11, 699-716.	1.2	55
54	Selective Distal Enhancer Control of the Mmp13 Gene Identified through Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Genomic Deletions. Journal of Biological Chemistry, 2015, 290, 11093-11107.	3.4	55

#	Article	IF	CITATIONS
55	Multiple enhancer regions located at significant distances upstream of the transcriptional start site mediate RANKL gene expression in response to 1,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 430-434.	2.5	53
56	Progesterone Receptor and Stat5 Signaling Cross Talk Through RANKL in Mammary Epithelial Cells. Molecular Endocrinology, 2013, 27, 1808-1824.	3.7	53
57	A Novel Distal Enhancer Mediates Inflammationâ€, PTHâ€, and Early Onset Murine Kidney Diseaseâ€Induced Expression of the Mouse <i>Fgf23</i> Gene. JBMR Plus, 2018, 2, 31-46.	2.7	52
58	Emerging regulatory paradigms for control of gene expression by 1,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 130-135.	2.5	49
59	Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression. Journal of Steroid Biochemistry and Molecular Biology, 2020, 196, 105500.	2.5	47
60	Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated $1\hat{1}\pm,25$ -dihydroxyvitamin D3-responsive genes. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 120-124.	2.5	46
61	A Novel Distal Enhancer Mediates Cytokine Induction of Mouse Rankl Gene Expression. Molecular Endocrinology, 2009, 23, 2095-2110.	3.7	45
62	An Enhancer 20 Kilobases Upstream of the Human Receptor Activator of Nuclear Factor-κB Ligand Gene Mediates Dominant Activation by 1,25-Dihydroxyvitamin D3. Molecular Endocrinology, 2008, 22, 1044-1056.	3.7	44
63	Retinoid X Receptor Acts as a Hormone Receptor in Vivo to Induce a Key Metabolic Enzyme for 1,25-Dihydroxyvitamin D3. Journal of Biological Chemistry, 1995, 270, 23906-23909.	3.4	43
64	Inhibition of 1,25-Dihydroxyvitamin D3-Dependent Transcription by Synthetic LXXLL Peptide Antagonists that Target the Activation Domains of the Vitamin D and Retinoid X Receptors. Journal of Bone and Mineral Research, 2002, 17, 2196-2205.	2.8	42
65	Mouse Rankl Expression Is Regulated in T Cells by c-Fos through a Cluster of Distal Regulatory Enhancers Designated the T Cell Control Region. Journal of Biological Chemistry, 2011, 286, 20880-20891.	3.4	42
66	Regulation of mouse Cyp24a1 expression via promoter-proximal and downstream-distal enhancers highlights new concepts of 1,25-dihydroxyvitamin D3 action. Archives of Biochemistry and Biophysics, 2012, 523, 2-8.	3.0	40
67	A chromatin-based mechanism controls differential regulation of the cytochrome P450 gene Cyp24a1 in renal and non-renal tissues. Journal of Biological Chemistry, 2019, 294, 14467-14481.	3.4	40
68	Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. Journal of Biological Chemistry, 2019, 294, 9518-9535.	3.4	40
69	Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 435-439.	2.5	37
70	1,25-Dihydroxyvitamin D3 and the aging-related Forkhead Box O and Sestrin proteins in osteoblasts. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 112-119.	2.5	35
71	The parathyroid hormone-regulated transcriptome in osteocytes: Parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone, 2015, 72, 81-91.	2.9	35
72	A High-Calcium and Phosphate Rescue Diet and VDR-Expressing Transgenes Normalize Serum Vitamin D Metabolite Profiles and Renal Cyp27b1 and Cyp24a1 Expression in VDR Null Mice. Endocrinology, 2015, 156, 4388-4397.	2.8	34

#	Article	IF	Citations
73	Regulation of RANKL promoter activity is associated with histone remodeling in murine bone stromal cells. Journal of Cellular Biochemistry, 2004, 93, 807-818.	2.6	33
74	The mouse RANKL gene locus is defined by a broad pattern of histone H4 acetylation and regulated through distinct distal enhancers. Journal of Cellular Biochemistry, 2011, 112, 2030-2045.	2.6	33
75	Mouse and Human BAC Transgenes Recapitulate Tissue-Specific Expression of the Vitamin D Receptor in Mice and Rescue the VDR-Null Phenotype. Endocrinology, 2014, 155, 2064-2076.	2.8	33
76	Deletion of the Distal $\langle i \rangle$ Tnfsf11 $\langle i \rangle$ RL-D2 Enhancer That Contributes to PTH-Mediated RANKL Expression in Osteoblast Lineage Cells Results in a High Bone Mass Phenotype in Mice. Journal of Bone and Mineral Research, 2016, 31, 416-429.	2.8	33
77	Epigenetic histone modifications and master regulators as determinants of context dependent nuclear receptor activity in bone cells. Bone, 2015, 81, 757-764.	2.9	32
78	The vitamin D receptor functions as a transcription regulator in the absence of 1,25-dihydroxyvitamin D3. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 265-270.	2.5	30
79	Transcriptional Regulation of the Human <i>TNFSF11</i> Gene in T Cells via a Cell Type-Selective Set of Distal Enhancers. Journal of Cellular Biochemistry, 2015, 116, 320-330.	2.6	29
80	Receptor Activator of Nuclear Factor-l [®] B Ligand-Induced Nuclear Factor of Activated T Cells (C1) Autoregulates Its Own Expression in Osteoclasts and Mediates the Up-Regulation of Tartrate-Resistant Acid Phosphatase. Molecular Endocrinology, 2008, 22, 737-750.	3.7	26
81	A Humanized Mouse Model of Hereditary 1,25-Dihydroxyvitamin D–Resistant Rickets Without Alopecia. Endocrinology, 2014, 155, 4137-4148.	2.8	26
82	Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells. Journal of Biological Chemistry, 2015, 290, 30573-30586.	3.4	26
83	Selective regulation of Mmp13 by 1,25(OH)2D3, PTH, and Osterix through distal enhancers. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 258-264.	2.5	26
84	The vitamin D receptor interacts preferentially with DRIP205-like LxxLL motifs. Archives of Biochemistry and Biophysics, 2007, 460, 206-212.	3.0	25
85	The impact of VDR expression and regulation in vivo. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 36-45.	2.5	25
86	The Vitamin D Receptor., 2005,, 167-191.		25
87	Vitamin D receptor–mediated gene regulation mechanisms and current concepts of vitamin D analog selectivity. Advances in Chronic Kidney Disease, 2002, 9, 168-174.	2.1	24
88	1,25-Dihydroxyvitamin D3 induced histone profiles guide discovery of VDR action sites. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 19-21.	2.5	24
89	Progestins inhibit calcitriol-induced CYP24A1 and synergistically inhibit ovarian cancer cell viability: An opportunity for chemoprevention. Gynecologic Oncology, 2016, 143, 159-167.	1.4	24
90	The Enhanced Hypercalcemic Response to 20-Epi-1,25-Dihydroxyvitamin D3 Results from a Selective and Prolonged Induction of Intestinal Calcium-Regulating Genes. Endocrinology, 2009, 150, 3448-3456.	2.8	23

#	Article	IF	CITATIONS
91	A Control Region Near the Fibroblast Growth Factor 23 Gene Mediates Response to Phosphate, 1,25(OH)2D3, and LPS In Vivo. Endocrinology, 2019, 160, 2877-2891.	2.8	20
92	The Phosphorylated Estrogen Receptor $\langle i \rangle \hat{l} \pm \langle i \rangle$ (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Molecular and Cellular Biology, 2019, 39, .	2.3	20
93	Synthetic LXXLL peptide antagonize 1,25-dihydroxyvitamin D3-dependent transcription. Journal of Cellular Biochemistry, 2003, 88, 252-258.	2.6	19
94	Expression of the Vitamin D Receptor in Skeletal Muscle: Are We There Yet?. Endocrinology, 2014, 155, 3214-3218.	2.8	19
95	A DNA Segment Spanning the Mouse $\langle i\rangle$ Tnfsf $11\langle i\rangle$ Transcription Unit and Its Upstream Regulatory Domain Rescues the Pleiotropic Biologic Phenotype of the RANKL Null Mouse. Journal of Bone and Mineral Research, 2015, 30, 855-868.	2.8	18
96	Genome-scale techniques highlight the epigenome and redefine fundamental principles of gene regulation. Journal of Bone and Mineral Research, 2011, 26, 1155-1162.	2.8	16
97	Class 3 semaphorins are transcriptionally regulated by 1,25(OH) 2 D 3 in osteoblasts. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 185-193.	2.5	15
98	Closing in on Vitamin D Action in Skeletal Muscle: Early Activity in Muscle Stem Cells?. Endocrinology, 2016, 157, 48-51.	2.8	14
99	Genomic Mechanisms Governing Mineral Homeostasis and the Regulation and Maintenance of Vitamin D Metabolism. JBMR Plus, 2021, 5, e10433.	2.7	13
100	Analysis of SOST expression using large minigenes reveals the MEF2C binding site in the evolutionarily conserved region (ECR5) enhancer mediates forskolin, but not 1,25-dihydroxyvitamin D3 or TGF \hat{l}^21 responsiveness. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 277-280.	2.5	11
101	The Vitamin D Receptor., 2011,, 97-135.		9
102	Profiling Histone Modifications by Chromatin Immunoprecipitation Coupled to Deep Sequencing in Skeletal Cells. Methods in Molecular Biology, 2015, 1226, 61-70.	0.9	5
103	Deletion of a Distal RANKL Gene Enhancer Delays Progression of Atherosclerotic Plaque Calcification in Hypercholesterolemic Mice. Journal of Cellular Biochemistry, 2017, 118, 4240-4253.	2.6	4
104	Deletion of Mediator 1 suppresses $TGF\hat{l}^2$ signaling leading to changes in epidermal lineages and regeneration. PLoS ONE, 2020, 15, e0238076.	2.5	4
105	Deletion of a putative promoter-proximal Tnfsf11 regulatory region in mice does not alter bone mass or Tnfsf11 expression in vivo. PLoS ONE, 2021, 16, e0250974.	2.5	4
106	Genome-Wide Perspectives on Vitamin D Receptor–Mediated Control of Gene Expression in Target Cells. , 2018, , 141-174.		2
107	Vitamin D gene regulation. , 2020, , 739-756.		2
108	Vitamin D and its analogs. , 2020, , 1733-1757.		1

#	Article	IF	CITATIONS
109	2-Carbon-Modified Analogs of 19-Nor-1α,25-Dihydroxyvitamin D3. , 2005, , 1543-1555.		1
110	The Vitamin D System: Biological and Molecular Actions in the Intestine and Colon., 2018, , 1153-1180.		0
111	Mesenchymal Differentiation, Epigenetic Dynamics, and Interactions With VDR., 2018, , 227-243.		O
112	The regulation of FGF23 production in bone and outside of bone., 2021,, 31-51.		0
113	Vitamin D3: Synthesis, Actions, and Mechanisms in the Intestine and Colon., 2006, , 1753-1771.		O
114	Title is missing!. , 2020, 15, e0238076.		0
115	Title is missing!. , 2020, 15, e0238076.		O
116	Title is missing!. , 2020, 15, e0238076.		0
117	Title is missing!. , 2020, 15, e0238076.		O