Meysam Safari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2086715/publications.pdf

Version: 2024-02-01

		393982	395343
35	1,144	19	33
papers	citations	h-index	g-index
25	25	25	1120
35	35	35	1120
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Mikrochimica Acta, 2017, 184, 1555-1564.	2.5	88
2	Speciation of chromium in environmental samples by dual electromembrane extraction system followed by high performance liquid chromatography. Analytica Chimica Acta, 2013, 789, 58-64.	2.6	85
3	Magnetic framework composite as sorbent for magnetic solid phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of tricyclic antidepressants. Analytica Chimica Acta, 2018, 1034, 204-213.	2.6	82
4	Facile magnetization of metal–organic framework TMU-6 for magnetic solid-phase extraction of organophosphorus pesticides in water and rice samples. Talanta, 2020, 218, 121139.	2.9	82
5	Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta, 2020, 210, 120641.	2.9	69
6	Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. Journal of Supercritical Fluids, 2016, 107, 571-580.	1.6	65
7	Modified magnetic nanoparticles with catechol as a selective sorbent for magnetic solid phase extraction of ultra-trace amounts of heavy metals in water and fruit samples followed by flow injection ICP-OES. Microchemical Journal, 2018, 143, 503-511.	2.3	58
8	Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Mikrochimica Acta, 2016, 183, 203-210.	2.5	56
9	On-line packed magnetic in-tube solid phase microextraction of acidic drugs such as naproxen and indomethacin by using Fe3O4@SiO2@layered double hydroxide nanoparticles with high anion exchange capacity. Mikrochimica Acta, 2018, 185, 192.	2.5	39
10	On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry. Analytica Chimica Acta, 2016, 922, 37-47.	2.6	36
11	Application of magnetic nanomaterials in magnetic in-tube solid-phase microextraction. Talanta, 2021, 221, 121648.	2.9	36
12	Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. Journal of Electroanalytical Chemistry, 2020, 877, 114722.	1.9	35
13	Magnetic frame work composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds. Journal of Chromatography A, 2018, 1570, 38-46.	1.8	34
14	Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids. Mikrochimica Acta, 2016, 183, 2297-2305.	2.5	33
15	Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids. Microchemical Journal, 2019, 146, 134-141.	2.3	30
16	Removal of reactive yellow 15 from water sample using a magnetite nanoparticles coated with covalently immobilized dimethyl octadecyl[3-(trimethoxysilylpropyl)]ammonium chloride ionic liquid. Microchemical Journal, 2019, 144, 64-72.	2.3	29
17	Synthesis of Fe3O4@PPy–MWCNT nanocomposite and its application for extraction of ultra-trace amounts of PAHs from various samples. Journal of the Iranian Chemical Society, 2017, 14, 623-634.	1.2	27
18	Extraction and preconcentration of formaldehyde in water by polypyrrole-coated magnetic nanoparticles and determination by high-performance liquid chromatography. Journal of Separation Science, 2015, 38, 3421-3427.	1.3	25

#	Article	IF	CITATIONS
19	Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchemical Journal, 2019, 146, 293-299.	2.3	23
20	Supercritical fluid extraction of papaverine and noscapine from poppy capsules followed by preconcentration with magnetic nano Fe ₃ O ₄ @Cu@diphenylthiocarbazone particles. New Journal of Chemistry, 2017, 41, 7028-7037.	1.4	19
21	A simple and label-free genosensor for BRCA1 related sequence based on electrospinned ribbon conductive nanofibers. Microchemical Journal, 2018, 143, 118-126.	2.3	19
22	Cadmiumâ€based metal–organic framework for removal of dye from aqueous solution. Environmental Progress and Sustainable Energy, 2020, 39, e13411.	1.3	19
23	Removal of phenol from aqueous solution using MOF/GO: Synthesis, characteristic, adsorption performance and mechanism. International Journal of Environmental Analytical Chemistry, 2023, 103, 3853-3864.	1.8	19
24	Evaluation of in-tube solid-phase microextraction method for co-extraction of acidic, basic, and neutral drugs. RSC Advances, 2016, 6, 14049-14058.	1.7	18
25	<scp>TMU</scp> â€24 (<scp>Zn</scp> â€based <scp>MOF</scp>) as an advance and recyclable adsorbent for the efficient removal of eosin B: Characterization, equilibrium, and thermodynamic studies. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	18
26	Signal amplification of novel sandwich-type genosensor via catalytic redox-recycling on platform MWCNTs/Fe3O4@TMU-21 for BRCA1 gene detection. Talanta, 2021, 234, 122698.	2.9	17
27	A highly sensitive electrochemical biosensor for chlorpyrifos pesticide detection using the adsorbent nanomatrix contain the human serum albumin and the Pd:CdTe quantum dots. Microchemical Journal, 2022, 179, 107424.	2.3	15
28	Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples. International Journal of Environmental Analytical Chemistry, 2022, 102, 4364-4377.	1.8	13
29	A new sensing strategy based on thymine bases–Hg2+–methylene blue coordination on the electrospun PES–QDs platform for detection of Hg2+ in fruit juice samples. Journal of the Iranian Chemical Society, 2019, 16, 2269-2279.	1.2	12
30	A signal amplification by QDs used for ferrocene-labeled sandwich aptasensor for determination of Hg2+ in water samples. Journal of the Iranian Chemical Society, 2019, 16, 2555-2564.	1.2	9
31	A Sandwich-Type Electrochemical Immunosensor Using Antibody-Conjugated Pt-Doped CdTe QDs as Enzyme-Free Labels for Sensitive HER2 Detection Based on a Magnetic Framework. Frontiers in Chemistry, 0, 10, .	1.8	9
32	Simultaneous determination of steroid drugs in the ointment via magnetic solid phase extraction followed by HPLC-UV. Journal of Pharmaceutical Analysis, 2018, 8, 250-257.	2.4	8
33	Co-solvent Effect on Spontaneous Formation of Large Nanoscale Structures in Catanionic Mixtures in the Anionic-Rich Region. Journal of Solution Chemistry, 2020, 49, 16-33.	0.6	8
34	Preparation, characterization and cell cytotoxicity of Pd-doped CdTe quantum dots and its application as a sensitive fluorescent nanoprobe. Journal of Materials Science: Materials in Electronics, 2019, 30, 14233-14242.	1.1	7
35	Extraction and separation of zirconium from hafnium by using nano-structured supramolecular solvent microextraction method. Journal of the Iranian Chemical Society, 2018, 15, 293-301.	1.2	2