
David Alexander Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2086419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry, 2000, 35, 1153-1169.	1.8	865
2	Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 2009, 100, 5996-6009.	4.8	263
3	New developments in solid-state fermentation. Process Biochemistry, 2000, 35, 1211-1225.	1.8	184
4	A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochemical Engineering Journal, 2004, 17, 15-26.	1.8	157
5	Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories, 2011, 10, 54.	1.9	152
6	Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemistry and Physics of Lipids, 2007, 147, 1-13.	1.5	141
7	Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochemical Engineering Journal, 2004, 18, 65-71.	1.8	116
8	Microbial conversion of lignocellulosic residues for production of animal feeds. Animal Feed Science and Technology, 2002, 98, 1-12.	1.1	111
9	Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochemical Engineering Journal, 2003, 13, 137-147.	1.8	104
10	Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochemistry, 2010, 45, 1348-1354.	1.8	100
11	Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 2016, 111, 54-62.	1.8	98
12	Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 8-13.	1.8	94
13	Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochemical Engineering Journal, 2013, 81, 15-23.	1.8	91
14	First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 719-729.	1.2	87
15	Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochemistry, 2012, 47, 1848-1855.	1.8	87
16	Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. , 1998, 60, 739-749.		86
17	Scale-up strategies for packed-bed bioreactors for solid-state fermentation. Process Biochemistry, 1999, 35, 167-178.	1.8	78
18	Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes?. Bioresource Technology, 2004, 93, 261-268.	4.8	76

#	Article	IF	CITATIONS
19	Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system. Journal of Molecular Catalysis B: Enzymatic, 2004, 30, 43-49.	1.8	74
20	Preliminary characterisation of a lipolytic activity from an extremely halophilic archaeon, Natronococcus sp Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 21-26.	1.8	71
21	Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors. Biochemical Engineering Journal, 1999, 3, 141-150.	1.8	69
22	A two-phase model for water and heat transfer within an intermittently-mixed solid-state fermentation bioreactor with forced aeration. Biotechnology and Bioengineering, 2002, 79, 416-428.	1.7	66
23	A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system. Biotechnology and Bioengineering, 1991, 38, 353-362.	1.7	64
24	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 399-404.	1.7	61
25	Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. Journal of Hazardous Materials, 2010, 180, 316-322.	6.5	61
26	Pineapple waste - a novel substrate for citric acid production by solid-state fermentation. Biotechnology Letters, 1995, 17, 1107-1110.	1.1	60
27	Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Applied Microbiology and Biotechnology, 2011, 89, 1395-1403.	1.7	60
28	Production of pectinases by solid-state fermentation in a pilot-scale packed-bed bioreactor. Chemical Engineering Journal, 2016, 283, 1009-1018.	6.6	59
29	Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme and Microbial Technology, 1996, 19, 171-175.	1.6	57
30	Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works!. PLoS ONE, 2014, 9, e109529.	1.1	55
31	Mathematical modeling as a tool to investigate the design and operation of the zymotis packed-bed bioreactor for solid-state fermentation. , 2000, 68, 127-135.		53
32	Solid-state fermentation in rotating drum bioreactors: Operating variables affect performance through their effects on transport phenomena. Biotechnology and Bioengineering, 1999, 63, 383-391.	1.7	51
33	Incorporation of death kinetics into a 2-dimensional dynamic heat transfer model for solid state fermentation. Journal of Chemical Technology and Biotechnology, 1995, 64, 253-260.	1.6	48
34	Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. Journal of Biotechnology, 2004, 114, 153-164.	1.9	47
35	Synthesis of myrcene by pyrolysis of \hat{l}^2 -pinene: Analysis of decomposition reactions. Journal of Analytical and Applied Pyrolysis, 2007, 80, 92-100.	2.6	46
36	Overview of solid state bioprocessing. Biotechnology Annual Review, 2002, 8, 183-225.	2.1	45

#	Article	IF	CITATIONS
37	Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. Journal of Molecular Catalysis B: Enzymatic, 2004, 31, 53-61.	1.8	45
38	Biochemical Engineering Aspects of Solid State Bioprocessing. Advances in Biochemical Engineering/Biotechnology, 2000, 68, 61-138.	0.6	42
39	Control strategies for intermittently mixed, forcefully aerated solid-state fermentation bioreactors based on the analysis of a distributed parameter model. Chemical Engineering Science, 2004, 59, 4493-4504.	1.9	41
40	Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Applied Microbiology and Biotechnology, 2008, 81, 441-448.	1.7	41
41	Protease production by Rhizopus oligosporus in solid-state fermentation. World Journal of Microbiology and Biotechnology, 1994, 10, 320-324.	1.7	40
42	A mathematical model describing the effect of temperature variations on the kinetics of microbial growth in solid-state culture. Process Biochemistry, 2005, 40, 801-807.	1.8	38
43	Intermittent agitation contributes to uniformity across the bed during pectinase production by Aspergillus niger grown in solid-state fermentation in a pilot-scale packed-bed bioreactor. Biochemical Engineering Journal, 2017, 121, 1-12.	1.8	38
44	Bed moisture estimation by monitoring of air stream temperature rise in packed-bed solid-state fermentation. Chemical Engineering Science, 2006, 61, 5654-5663.	1.9	34
45	Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth ofRhizopus oligosporus on a solid surface. Biotechnology and Bioengineering, 2003, 84, 71-77.	1.7	33
46	Baffles increase performance of solid-state fermentation in rotating drum bioreactors. Biotechnology Letters, 1995, 9, 295-298.	0.5	32
47	Two-phase model of the kinetics of growth ofRhizopus oligosporusin membrane culture. , 2000, 68, 619-627.		32
48	Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel, 2014, 117, 458-462.	3.4	32
49	Immobilization and Characterization of a New Regioselective and Enantioselective Lipase Obtained from a Metagenomic Library. PLoS ONE, 2015, 10, e0114945.	1.1	32
50	Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochemistry, 2017, 62, 37-47.	1.8	32
51	Mode of growth ofRhizopus oligosporus on a model substrate in solid-state fermentation. World Journal of Microbiology and Biotechnology, 1990, 6, 201-208.	1.7	31
52	Production of Microbial Biosurfactants by Solid-State Cultivation. Advances in Experimental Medicine and Biology, 2010, 672, 203-210.	0.8	31
53	Immobilization of LipC12, a new lipase obtained by metagenomics, and its application in the synthesis of biodiesel esters. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 45-51.	1.8	30
54	Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140320.	1.1	30

#	Article	IF	CITATIONS
55	Approach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors. , 2000, 67, 274-282.		29
56	Synthesis of Ethylic Esters for Biodiesel Purposes Using Lipases Naturally Immobilized in a Fermented Solid Produced Using <i>Rhizopus microsporus</i> . Energy & Fuels, 2014, 28, 5197-5203.	2.5	29
57	Production of rhamnolipids in solidâ€state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnology Journal, 2009, 4, 748-755.	1.8	27
58	A Model for Growth of a Single Fungal Hypha Based on Well-Mixed Tanks in Series: Simulation of Nutrient and Vesicle Transport in Aerial Reproductive Hyphae. PLoS ONE, 2015, 10, e0120307.	1.1	27
59	Biodiesel production by solvent-free ethanolysis of palm oil catalyzed by fermented solids containing lipases of Burkholderia contaminans. Biochemical Engineering Journal, 2017, 127, 77-86.	1.8	27
60	Modelling fungal growth on surfaces. Biotechnology Letters, 1998, 12, 313-318.	0.5	26
61	Spore production in solid-state fermentation of rice by Clonostachys rosea, a biopesticide for gray mold of strawberries. Process Biochemistry, 2007, 42, 275-278.	1.8	26
62	An efficient system for catalyzing ester synthesis using a lipase from a newly isolatedBurkholderia cepaciastrain. Biocatalysis and Biotransformation, 2008, 26, 197-203.	1.1	26
63	Degalatosylation of xyloglucan: Effect on aggregation and conformation, as determined by time dependent static light scattering, HPSEC–MALLS and viscosimetry. Carbohydrate Polymers, 2011, 83, 1636-1642.	5.1	26
64	Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel, 2015, 159, 364-372.	3.4	26
65	Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chemical Engineering Journal, 2017, 316, 341-349.	6.6	26
66	Enhanced microalgae biomass and lipid output for increased biodiesel productivity. Renewable Energy, 2021, 163, 138-145.	4.3	26
67	A model substrate for solid-state fermentation. Biotechnology Letters, 1986, 8, 827-832.	1.1	25
68	Operational parameters for packed beds in solid-state cultivation. Biotechnology Advances, 1993, 11, 599-610.	6.0	25
69	Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger. AMB Express, 2014, 4, 33.	1.4	25
70	O2 uptake during solid-state fermentation in a rotating drum bioreactor. Biotechnology Letters, 1998, 20, 607-611.	1.1	24
71	Response ofRhizopus oligosporus to temporal temperature profiles in a model solid-state fermentation system. Biotechnology and Bioengineering, 1999, 64, 722-728.	1.7	24
72	The potential for establishment of axial temperature profiles during solid-state fermentation in rotating drum bioreactors. Biotechnology and Bioengineering, 2002, 80, 114-122.	1.7	24

DAVID ALEXANDER MITCHELL

#	Article	IF	CITATIONS
73	Investigating the use of cooling surfaces in solid-state fermentation tray bioreactors: modelling and experimentation. Journal of Chemical Technology and Biotechnology, 2004, 79, 1228-1242.	1.6	24
74	Mass transfer correlations for rotating drum bioreactors. Journal of Biotechnology, 2002, 97, 89-101.	1.9	23
75	A model-based investigation of the potential advantages of multi-layer packed beds in solid-state fermentation. Biochemical Engineering Journal, 2010, 48, 195-203.	1.8	23
76	Mathematical model of heat transfer during solid-state fermentation in well-mixed rotating drum bioreactors. Journal of Chemical Technology and Biotechnology, 2003, 78, 1180-1192.	1.6	22
77	Suppression of penetrative hyphae ofRhizopus oligosporus by membrane filters in a model solid-state fermentation system. Biotechnology Letters, 1989, 3, 45-50.	0.5	21
78	Use of confocal microscopy to follow the development of penetrative hyphae during growth ofRhizopus oligosporus in an artificial solid-state fermentation system. Biotechnology and Bioengineering, 2003, 81, 438-447.	1.7	21
79	Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnology Letters, 1998, 12, 171-175.	0.5	20
80	Residence time distributions of gas flowing through rotating drum bioreactors. Biotechnology and Bioengineering, 2001, 74, 145-153.	1.7	20
81	An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: General formulation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 705-715.	1.1	20
82	The introduction of the fungal d-galacturonate pathway enables the consumption of d-galacturonic acid by Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 144.	1.9	20
83	Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess and Biosystems Engineering, 2018, 41, 573-583.	1.7	20
84	Improvement of growth ofRhizopus oligosporus on a model solid substrate. Biotechnology Letters, 1988, 10, 497-502.	1.1	19
85	Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme and Microbial Technology, 2019, 130, 109365.	1.6	19
86	Agar plate growth studies of Rhizopus oligosporus and Aspergillus oryzae to determine their suitability for solid-state fermentation. Applied Microbiology and Biotechnology, 1988, 28, 598.	1.7	18
87	An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: Application to the hydrolysis of triacylglycerols by lipases. Journal of Biotechnology, 2008, 133, 343-350.	1.9	17
88	A comparative study of the synthesis of n-butyl-oleate using a crude lipolytic extract of Penicillum coryophilum in water-restricted environments. Journal of Molecular Catalysis B: Enzymatic, 2005, 34, 25-32.	1.8	16
89	Determination of the quantitative stereoselectivity fingerprint of lipases during hydrolysis of a prochiral triacylglycerol. Journal of Biotechnology, 2008, 135, 168-173.	1.9	16

90 Solid-State Fermentation Bioreactor Fundamentals: Introduction and Overview. , 2006, , 1-12.

#	Article	IF	CITATIONS
91	A three-dimensional discrete lattice-based system for modeling the growth of aerial hyphae of filamentous fungi on solid surfaces: A tool for investigating micro-scale phenomena in solid-state fermentation. Biochemical Engineering Journal, 2011, 54, 164-171.	1.8	15
92	Biochemical characterization and application of a new lipase and its cognate foldase obtained from a metagenomic library derived from fat-contaminated soil. International Journal of Biological Macromolecules, 2019, 137, 442-454.	3.6	15
93	Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass. Archives of Microbiology, 2009, 191, 369-378.	1.0	14
94	Rheological Characterization of a Xanthan–Galactomannan Hydrogel Loaded with Lipophilic Substances. Journal of Pharmaceutical Sciences, 2012, 101, 2457-2467.	1.6	14
95	First co-expression of a lipase and its specific foldase obtained by metagenomics. Microbial Cell Factories, 2014, 13, 171.	1.9	14
96	Optimal operating conditions for maximum biogas production in anaerobic bioreactors. Applied Thermal Engineering, 2014, 62, 197-206.	3.0	14
97	CFD simulation of a packed-bed solid-state fermentation bioreactor. Applied Mathematical Modelling, 2019, 70, 439-458.	2.2	14
98	Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochemical Engineering Journal, 2021, 172, 108047.	1.8	14
99	Development of a model solid-state fermentation system. Biotechnology Letters, 1988, 2, 1-6.	0.5	13
100	An empirical model of growth of Rhizopus oligosporus in solid-state fermentation. Journal of Bioscience and Bioengineering, 1991, 72, 224-226.	0.9	13
101	Enhancing the enantioselectivity of the lipase from Burkholderia cepacia LTEB11 towards the resolution of secondary allylic alcohols. Biocatalysis and Agricultural Biotechnology, 2014, 3, 146-153.	1.5	13
102	Protein measurement in solid-state fermentation. Biotechnology Letters, 1991, 5, 437-442.	0.5	12
103	Continuous solid-state fermentation as affected by substrate flow pattern. Chemical Engineering Science, 2006, 61, 2675-2687.	1.9	12
104	SPIL: Simultaneous production and immobilization of lipase from <i>Burkholderia cepacia</i> LTEB11. Biocatalysis and Biotransformation, 2011, 29, 19-24.	1.1	12
105	Characterization of an immobilized recombinant lipase from Rhizopus oryzae: Synthesis of ethyl-oleate. Biocatalysis and Agricultural Biotechnology, 2014, 3, 13-19.	1.5	12
106	Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems. Advances in Biochemical Engineering/Biotechnology, 2015, 149, 171-221.	0.6	12
107	Tailoring recombinant lipases: keeping the His-tag favors esterification reactions, removing it favors hydrolysis reactions. Scientific Reports, 2018, 8, 10000.	1.6	12
108	A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates. Biochemical Engineering Journal, 2021, 166, 107854.	1.8	11

#	Article	IF	CITATIONS
109	Protein enrichment of sago starch by solid-state fermentation with Rhizopus spp World Journal of Microbiology and Biotechnology, 1991, 7, 419-427.	1.7	10
110	A packed bed solid-state cultivation system for the production of animal feed: Cultivation, drying and product quality. Biotechnology Letters, 1992, 14, 623-628.	1.1	10
111	Interesterification of fat blends using a fermented solid with lipolytic activity. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 75-81.	1.8	10
112	Mathematical Model of the Binding of Allosteric Effectors to the <i>Escherichia coli</i> PII Signal Transduction Protein GlnB. Biochemistry, 2013, 52, 2683-2693.	1.2	10
113	Mathematical model of the CO ₂ solubilisation reaction rates developed for the study of photobioreactors. Canadian Journal of Chemical Engineering, 2014, 92, 787-795.	0.9	10
114	A combined sorption and kinetic model for multiphasic ethyl esterification of fatty acids from soybean soapstock acid oil catalyzed by a fermented solid with lipase activity in a solvent-free system. Biochemical Engineering Journal, 2017, 120, 84-92.	1.8	10
115	Conversion of citric pectin into D-galacturonic acid with high substrate loading using a fermented solid with pectinolytic activity. Biocatalysis and Agricultural Biotechnology, 2017, 11, 214-219.	1.5	10
116	Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. International Journal of Biological Macromolecules, 2018, 116, 1222-1231.	3.6	10
117	The ammonium transporter AmtB and thePIIsignal transduction protein GlnZ are required to inhibit DraG inAzospirillumÂbrasilense. FEBS Journal, 2019, 286, 1214-1229.	2.2	10
118	Estimation of heat and mass transfer coefficients in a pilot packed-bed solid-state fermentation bioreactor. Chemical Engineering Journal, 2021, 408, 127246.	6.6	10
119	Synthesis of flavor esters and structured lipids by a new immobilized lipase, LipC12, obtained from metagenomics. Biocatalysis and Agricultural Biotechnology, 2016, 8, 294-300.	1.5	9
120	Looking through a new lens: Expressing the Ping Pong bi bi equation in terms of specificity constants. Biochemical Engineering Journal, 2022, 178, 108276.	1.8	9
121	Liquid–liquid equilibrium data and thermodynamic modeling for systems related to the production of ethyl esters of fatty acids from soybean soapstock acid oil. Fuel, 2015, 147, 147-154.	3.4	8
122	Fingerprinting of oligosaccharide-hydrolyzing enzymes that catalyze branched reaction schemes. Biochemical Engineering Journal, 2016, 113, 93-101.	1.8	8
123	Title is missing!. Biotechnology Letters, 2002, 24, 521-525.	1.1	7
124	A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-d-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11. Process Biochemistry, 2018, 73, 86-93.	1.8	7
125	Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation. Advances in Biochemical Engineering/Biotechnology, 2019, 169, 27-50.	0.6	7
126	The use of dilution rate cycling to stabilise recombinant plasmids in continuous culture of recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 1996, 45, 205-210.	1.9	6

#	Article	IF	CITATIONS
127	Evaluation of the Structural Composition and Surface Properties of Rhamnolipid Mixtures Produced by Pseudomonas aeruginosa UFPEDA 614 in Different Cultivation Periods. Applied Biochemistry and Biotechnology, 2015, 175, 988-995.	1.4	6
128	Data analysis of plasmid stability in continuous culture of recombinantSaccharomyces cerevisiae. Biotechnology Letters, 1992, 6, 393-398.	0.5	5
129	Transient two dimensional heat conduction by orthogonal collocation technique. International Communications in Heat and Mass Transfer, 1993, 20, 557-566.	2.9	5
130	Title is missing!. Biotechnology Letters, 1998, 20, 349-353.	1.1	5
131	Group III: Rotating-Drum and Stirred-Drum Bioreactors. , 2006, , 95-114.		5
132	Colonization of solid particles by Rhizopus oligosporus and Aspergillus oryzae in solid-state fermentation involves two types of penetrative hyphae: A model-based study on how these hyphae grow. Biochemical Engineering Journal, 2016, 114, 173-182.	1.8	5
133	Microalgae Culture Medium Recycling: Improved Production of Biomass and Lipids, Biodiesel Properties and Cost Reduction. Bioenergy Research, 2022, 15, 2076-2089.	2.2	5
134	A new mathematical method for determining the enantiomeric ratio in lipase-catalyzed reactions. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 23-28.	1.8	4
135	Solid-State Cultivation Bioreactors. Learning Materials in Biosciences, 2019, , 105-133.	0.2	4
136	Fermented solids that contain lipases produced by Rhizopus microsporus have an S-enantiopreference in the resolution of secondary alcohols. Biochemical Engineering Journal, 2021, 165, 107817.	1.8	4
137	Stochastic models based on the Monte Carlo method for the hydrolysis of oligogalacturonates and polygalacturonates by endopolygalacturonases and exopolygalacturonases. Chemical Engineering Journal, 2017, 322, 417-427.	6.6	3
138	Fingerprinting processive Î ² -amylases. Biochemical Engineering Journal, 2018, 137, 334-343.	1.8	3
139	Kinetics of lipase-catalyzed kinetic resolutions of racemic compounds: Reparameterization in terms of specificity constants. Biochemical Engineering Journal, 2022, 181, 108397.	1.8	3
140	Polyoxovanadates as new Pâ€glycoprotein inhibitors: insights into the mechanism of inhibition. FEBS Letters, 2022, 596, 381-399.	1.3	3
141	Enzymatic transglycosylation by the Ping Pong bi bi mechanism: Selectivity for transglycosylation versus primary and secondary hydrolysis. Biochemical Engineering Journal, 2022, 182, 108440.	1.8	3
142	Application of Automatic Control Strategies to SSF Bioreactors. , 2006, , 387-402.		2
143	A Model of a Rotating-Drum Bioreactor. , 2006, , 315-330.		2
144	Determination of lipase activity using image analysis. Analytical Biochemistry, 2006, 351, 305-307.	1.1	2

#	Article	IF	CITATIONS
145	Environmental Solid-State Cultivation Processes and Bioreactors. , 2010, , 287-342.		2
146	Fermented Solids and Their Application in the Production of Organic Compounds of Biotechnological Interest. Advances in Biochemical Engineering/Biotechnology, 2019, 169, 125-146.	0.6	2
147	More random-walk than autotropism: A model-based study on how aerial hyphae of Rhizopus oligosporus grow in solid-state fermentation. Biochemical Engineering Journal, 2019, 141, 49-59.	1.8	2
148	Time is of the essence: A new strategy for time-stepping in stochastic models describing the enzymatic hydrolysis of colloidal suspensions of polysaccharides. Chemical Engineering Journal, 2021, 405, 126672.	6.6	2
149	Potential of time-stepping stochastic models as tools for guiding the design and operation of processes for the enzymatic hydrolysis of polysaccharides – A review. Bioresource Technology, 2021, 323, 124559.	4.8	2
150	Recent Developments in Modeling of Microbial Growth Kinetics and Intraparticle Phenomena in Solid State Fermentation. ChemInform, 2004, 35, no.	0.1	1
151	Modeling of the Effects of Growth on the Local Environment. , 2006, , 235-248.		1
152	Models of Packed-Bed Bioreactors. , 2006, , 331-348.		1
153	Modeling and simulation of the microalgae derived hydrogen process in compact photobioreactors. , 2013, , .		1
154	Genome sequencing of Burkholderia contaminans LTEB11 reveals a lipolytic arsenal of biotechnological interest. Brazilian Journal of Microbiology, 2019, 50, 619-624.	0.8	1
155	Solid-State Fermentation. , 2019, , .		1
156	Performing under pressure: esterification activity of dry fermented solids in subcritical and supercritical CO2. Biotechnology Letters, 2021, 43, 503-509.	1.1	1
157	Rate equations for two enzyme-catalyzed Ping Pong bi bi reactions in series: General formulation for two reaction loops joined by a common vertex and deduction of a reaction loop selectivity factor. Biochemical Engineering Journal, 2022, 177, 108234.	1.8	1
158	Appropriate Levels of Complexity for Modeling SSF Bioreactors. , 2006, , 179-190.		0
159	Modeling of Heat and Mass Transfer in SSF Bioreactors. , 2006, , 249-264.		0
160	Estimation of Transfer Coefficients for SSF Bioreactors. , 2006, , 279-290.		0
161	A Model of an Intermittently-Mixed Forcefully-Aerated Bioreactor. , 2006, , 349-362.		0
162	Use of the Langmuir-Hinshelwood-Hougen-Watson equation to describe the ethyl esterification of fatty acids catalyzed by a fermented solid with lipase activity. Biochemical Engineering Journal, 2021, 168, 107936.	1.8	0

#	Article	IF	CITATIONS
163	ESCALONAMENTO DA PRODUÇÃO DE BIODIESEL EM REATOR DE LEITO FIXO COM O SÓLIDO FERMENTADO DE Burkholderia lata CPQBA 515-12 DRM 01. , 0, , .		0
164	PRODUÇÃO DE ENZIMA EM FERMENTAÇÃO NO ESTADO SÓLIDO EM BIORREATOR PILOTO: ESTRATÉGIA CONTROLE DA TEMPERATURA DO LEITO. , 0, , .	DE	0
165	Estudo da agitação intermitente na produção de pectinases em fermentação no estado sólido em biorreator piloto. , 0, , .		Ο
166	MODELAGEM TERMODINÃ,MICA DE SISTEMAS RELACIONADOS À SÃNTESE DE ÉSTERES DO BIODIESEL A PA DE MATÉRIA-PRIMA RESIDUAL. , 0, , .	RTIR	0