
Nicholas P Webb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2086418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ten practical questions to improve data quality. Rangelands, 2022, 44, 17-28.	0.9	9
2	Wind Erosion in Anthropogenic Environments. , 2022, , 301-319.		1
3	A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations. Aeolian Research, 2022, 54, 100766.	1.1	14
4	Parameterizing an aeolian erosion model for rangelands. Aeolian Research, 2022, 54, 100769.	1.1	13
5	Measuring the social and ecological performance of agricultural innovations on rangelands: Progress and plans for an indicator framework in the LTAR network. Rangelands, 2022, 44, 334-344.	0.9	8
6	An Inductive Approach to Developing Ecological Site Concepts with Existing Monitoring Data. Rangeland Ecology and Management, 2022, 83, 133-148.	1.1	4
7	Provoking a Cultural Shift in Data Quality. BioScience, 2021, 71, 647-657.	2.2	13
8	Influence of physical crust cover on the wind erodibility of soils in the inland Pacific Northwest, USA. Earth Surface Processes and Landforms, 2021, 46, 1445-1457.	1.2	7
9	Vegetation Canopy Gap Size and Height: Critical Indicators for Wind Erosion Monitoring and Management. Rangeland Ecology and Management, 2021, 76, 78-83.	1.1	26
10	Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China. Science of the Total Environment, 2021, 798, 149189.	3.9	15
11	Size Distribution of Mineral Dust Emissions From Sparsely Vegetated and Supplyâ€Limited Dryland Soils. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	7
12	Ecosystem dynamics and aeolian sediment transport in the southern Kalahari. African Journal of Ecology, 2020, 58, 337-344.	0.4	3
13	Comparison of soil-aggregate crushing-energy meters. Aeolian Research, 2020, 42, 100559.	1.1	5
14	Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecological Indicators, 2020, 110, 105881.	2.6	60
15	A note on the use of drag partition in aeolian transport models. Aeolian Research, 2020, 42, 100560.	1.1	19
16	Critical standing crop residue amounts for wind erosion control in the inland Pacific Northwest, USA. Catena, 2020, 195, 104742.	2.2	24
17	Scale Invariance of Albedoâ€Based Wind Friction Velocity. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031978.	1.2	16
18	Dust emission from crusted surfaces: Insights from field measurements and modelling. Aeolian Research, 2019, 40, 1-14.	1.1	32

NICHOLAS P WEBB

#	Article	IF	CITATIONS
19	Reducing Sampling Uncertainty in Aeolian Research to Improve Change Detection. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1366-1377.	1.0	25
20	Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environmental Science and Policy, 2019, 93, 43-52.	2.4	91
21	Quantifying Anthropogenic Dust Emissions. Earth's Future, 2018, 6, 286-295.	2.4	52
22	Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agricultural Systems, 2018, 162, 123-135.	3.2	21
23	Exploring dust emission responses to land cover change using an ecological land classification. Aeolian Research, 2018, 32, 141-153.	1.1	19
24	Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 2018, 204, 756-768.	4.6	53
25	The Grassland–Shrubland Regime Shift in the Southwestern United States: Misconceptions and Their Implications for Management. BioScience, 2018, 68, 678-690.	2.2	81
26	Elevated aeolian sediment transport on the Colorado Plateau, USA: The role of grazing, vehicle disturbance, and increasing aridity. Earth Surface Processes and Landforms, 2018, 43, 2897-2914.	1.2	35
27	Enhancing Wind Erosion Monitoring and Assessment for U.S. Rangelands. Rangelands, 2017, 39, 85-96.	0.9	32
28	Field sampling of loose erodible material: A new system to consider the full particle-size spectrum. Aeolian Research, 2017, 28, 83-90.	1.1	6
29	Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 2017, 15, 450-459.	1.9	144
30	Vegetation in Drylands: Effects on Wind Flow and Aeolian Sediment Transport. Land, 2017, 6, 64.	1.2	42
31	The landâ€potential knowledge system (landpks): mobile apps and collaboration for optimizing climate change investments. Ecosystem Health and Sustainability, 2016, 2, .	1.5	32
32	Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Research, 2016, 23, 63-78.	1.1	64
33	The National Wind Erosion Research Network: Building a standardized long-term data resource for aeolian research, modeling and land management. Aeolian Research, 2016, 22, 23-36.	1.1	58
34	Threshold wind velocity dynamics as a driver of aeolian sediment mass flux. Aeolian Research, 2016, 20, 45-58.	1.1	39
35	Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition. Aeolian Research, 2015, 17, 89-99.	1.1	50
36	A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics. Aeolian Research, 2015, 19, 37-54.	1.1	27

NICHOLAS P WEBB

#	Article	lF	CITATIONS
37	The effect of roughness elements on wind erosion: The importance of surface shear stress distribution. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6066-6084.	1.2	43
38	Ecological siteâ€based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands. Ecological Applications, 2014, 24, 1405-1420.	1.8	47
39	Consistency of wind erosion assessments across land use and land cover types: A critical analysis. Aeolian Research, 2014, 15, 253-260.	1.1	25
40	Integrating biophysical and socio-economic evaluations to improve the efficacy of adaptation assessments for agriculture. Global Environmental Change, 2013, 23, 1164-1177.	3.6	19
41	Soil organic carbon dust emission: an omitted global source of atmospheric <scp><scp>CO₂</scp></scp> . Global Change Biology, 2013, 19, 3238-3244.	4.2	56
42	Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surface Processes and Landforms, 2013, 38, 1662-1671.	1.2	43
43	The significance of carbonâ€enriched dust for global carbon accounting. Global Change Biology, 2012, 18, 3275-3278.	4.2	57
44	Climate change scenarios to facilitate stakeholder engagement in agricultural adaptation. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 957-973.	1.0	13
45	Interacting effects of vegetation, soils and management on the sensitivity of Australian savanna rangelands to climate change. Climatic Change, 2012, 112, 925-943.	1.7	26
46	Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Research, 2011, 3, 165-179.	1.1	122
47	Approaches to modelling land erodibility by wind. Progress in Physical Geography, 2009, 33, 587-613.	1.4	44
48	A model to predict land susceptibility to wind erosion in western Queensland, Australia. Environmental Modelling and Software, 2009, 24, 214-227.	1.9	40
49	Visual assessment of the Australian Land Erodibility Model. Journal of Arid Environments, 2009, 73, 678-682.	1.2	2
50	Simulation of the spatiotemporal aspects of land erodibility in the northeast Lake Eyre Basin, Australia, 1980–2006. Journal of Geophysical Research, 2009, 114, .	3.3	15
51	AUSLEM (AUStralian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia. Geomorphology, 2006, 78, 179-200.	1.1	76
52	Performance of the SWEEP model in assessing the impact of crop rotation, green manure, fertilizer, and tillage on wind erosion. Land Degradation and Development, 0, , .	1.8	2