Kaushik M Desai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2086365/publications.pdf

Version: 2024-02-01

44 papers 2,908 citations

293460 24 h-index 312153 41 g-index

44 all docs

44 docs citations

44 times ranked 3660 citing authors

#	Article	IF	CITATIONS
1	Glycemic, insulinemic and methylglyoxal postprandial responses to starches alone or in whole diets in dogs versus cats: Relating the concept of glycemic index to metabolic responses and gene expression. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2021, 257, 110973.	0.8	10
2	The effects of oral arginine on its metabolic pathways in Sprague–Dawley rats. British Journal of Nutrition, 2020, 123, 135-148.	1.2	9
3	Pharmacological evaluation of novel alagebrium analogs as methylglyoxal scavengers in vitro in cardiac myocytes and in vivo in SD rats. International Journal of Cardiology, 2016, 223, 581-589.	0.8	7
4	The Small Molecule Indirubin-3'-Oxime Inhibits Protein Kinase R: Antiapoptotic and Antioxidant Effect in Rat Cardiac Myocytes. Pharmacology, 2016, 97, 25-30.	0.9	20
5	Alagebrium attenuates methylglyoxal induced oxidative stress and AGE formation in H9C2 cardiac myocytes. Life Sciences, 2016, 146, 8-14.	2.0	16
6	Protein kinase R and the metabolic syndrome. Journal of Cellular Biotechnology, 2015, 1, 53-61.	0.1	1
7	Methylglyoxal, a Reactive Glucose Metabolite, Increases Renin Angiotensin Aldosterone and Blood Pressure in Male Sprague-Dawley Rats. American Journal of Hypertension, 2014, 27, 308-316.	1.0	24
8	Hydrogen Sulfide Releasing Aspirin, ACS14, Attenuates High Glucose-Induced Increased Methylglyoxal and Oxidative Stress in Cultured Vascular Smooth Muscle Cells. PLoS ONE, 2014, 9, e97315.	1.1	20
9	Upâ€regulation of aldolase <scp>A</scp> and methylglyoxal production in adipocytes. British Journal of Pharmacology, 2013, 168, 1639-1646.	2.7	11
10	Increased Methylglyoxal Formation with Upregulation of Renin Angiotensin System in Fructose Fed Sprague Dawley Rats. PLoS ONE, 2013, 8, e74212.	1.1	47
11	Arginine Attenuates Methylglyoxal- and High Glucose-Induced Endothelial Dysfunction and Oxidative Stress by an Endothelial Nitric-Oxide Synthase-Independent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 196-204.	1.3	37
12	Aldolase B Knockdown Prevents High Glucose-Induced Methylglyoxal Overproduction and Cellular Dysfunction in Endothelial Cells. PLoS ONE, 2012, 7, e41495.	1.1	19
13	A study of the mechanisms of methylglyoxal-induced dyslipidemia. International Journal of Cardiology, 2011, 152, S75-S76.	0.8	O
14	Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular Research, 2011, 92, 494-503.	1.8	59
15	Chronic Methylglyoxal Infusion by Minipump Causes Pancreatic β-Cell Dysfunction and Induces Type 2 Diabetes in Sprague-Dawley Rats. Diabetes, 2011, 60, 899-908.	0.3	131
16	Hydrogen sulfide and the metabolic syndrome. Expert Review of Clinical Pharmacology, 2011, 4, 63-73.	1.3	19
17	Oxidative stress and aging: Is methylglyoxal the hidden enemy?This review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease Canadian Journal of Physiology and Pharmacology, 2010, 88, 273-284.	0.7	180
18	Alagebrium attenuates acute methylglyoxalâ€induced glucose intolerance in Spragueâ€Dawley rats. British Journal of Pharmacology, 2010, 159, 166-175.	2.7	80

#	Article	IF	Citations
19	Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. British Journal of Pharmacology, 2010, 161, 1843-1856.	2.7	102
20	Decreases in splanchnic vascular resistance contribute to hypotensive effects of <scp>l < /scp>-serine in hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1789-H1796.</scp>	1.5	5
21	Methylglyoxal, Oxidative Stress, and Aging. , 2010, , 149-167.		3
22	Methylglyoxal, protein binding and biological samples: Are we getting the true measure?. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1093-1100.	1,2	80
23	Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism: Clinical and Experimental, 2008, 57, 1211-1220.	1.5	66
24	FREE RADICAL GENERATION BY METHYLGLYOXAL IN TISSUES. Drug Metabolism and Drug Interactions, 2008, 23, 151-174.	0.3	68
25	Nitric Oxide Synthase Inhibition Promotes Endothelium-Dependent Vasodilatation and the Antihypertensive Effect of <scp>l</scp> -Serine. Hypertension, 2008, 51, 791-796.	1.3	25
26	L-Serine lowers while glycine increases blood pressure in chronic L-NAME-treated and spontaneously hypertensive rats. Journal of Hypertension, 2008, 26, 2339-2348.	0.3	23
27	Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. Journal of Hypertension, 2008, 26, 765-772.	0.3	73
28	Attenuation of Hypertension Development by Aminoguanidine in Spontaneously Hypertensive Rats: Role of Methylglyoxal. American Journal of Hypertension, 2007, 20, 629-636.	1.0	51
29	Methylglyoxal and Advanced Glycation Endproducts: New Therapeutic Horizons?. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 89-99.	1.5	78
30	Clofibrate Acutely Reverses Saline-Induced Endothelial Dysfunction: Role of Calcium-Activated Potassium Channels. American Journal of Hypertension, 2006, 19, 1167-1173.	1.0	9
31	Inability to Upregulate Cytochrome P450 4A and 2C Causes Salt Sensitivity in Young Sprague-Dawley Rats. American Journal of Hypertension, 2006, 19, 1174-1180.	1.0	17
32	Gender-related differences in advanced glycation endproducts, oxidative stress markers and nitric oxide synthases in rats. Kidney International, 2006, 69, 281-287.	2.6	53
33	Chronic treatment with vascular endothelial growth factor preserves agonist-evoked vascular responses in the streptozotocin-induced diabetic rat. Diabetologia, 2006, 49, 811-818.	2.9	11
34	EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats. European Journal of Pharmacology, 2006, 546, 120-126.	1.7	30
35	Vascular methylglyoxal metabolism and the development of hypertension. Journal of Hypertension, 2005, 23, 1565-1573.	0.3	108
36	Nitric oxide synthase inhibition exaggerates the hypotensive response to ghrelin: role of calcium-activated potassium channels. Journal of Hypertension, 2005, 23, 779-784.	0.3	62

#	Article	IF	CITATIONS
37	Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney International, 2004, 66, 2315-2321.	2.6	109
38	Endothelial dysfunction accompanies a pro-oxidant, pro-diabetic challenge in the insulin resistant, obese Zucker rat in vivo. European Journal of Pharmacology, 2000, 402, 95-99.	1.7	36
39	Pro-oxidant challenge in vivo provokes the onset of NIDDM in the insulin resistant obese Zucker rat. British Journal of Pharmacology, 1999, 128, 269-271.	2.7	42
40	F2-isoprostane evidence of oxidant stress in the insulin resistant, obese Zucker rat: effects of vitamin E. European Journal of Pharmacology, 1999, 377, 89-92.	1.7	91
41	Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13176-13181.	3.3	835
42	The Golgi Association of Endothelial Nitric Oxide Synthase Is Necessary for the Efficient Synthesis of Nitric Oxide. Journal of Biological Chemistry, 1995, 270, 17641-17644.	1.6	232
43	5â€HT ₃ receptors do not mediate vagallyâ€induced relaxation or contraction of the isolated stomach of the guineaâ€pig. British Journal of Pharmacology, 1994, 111, 346-350.	2.7	5
44	Aging: Drugs to Eliminate Methylglyoxal, a Reactive Glucose Metabolite, and Advanced Glycation Endproducts., 0,,.		4