
Andrea Listorti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/208580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical insights into perovskite ink stability. CheM, 2022, 8, 31-45.	5.8	19
2	Plasma-Deposited Fluorocarbon Coatings on Methylammonium Lead Iodide Perovskite Films. Energies, 2022, 15, 4512.	1.6	1
3	Water‣table DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 3611-3618.	7.2	72
4	Water‣table DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie, 2021, 133, 3655-3662.	1.6	12
5	Two-step MAPbl ₃ deposition by low-vacuum proximity-space-effusion for high-efficiency inverted semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 16456-16469.	5.2	25
6	Lead-Free Metal Halide Perovskites for Hydrogen Evolution from Aqueous Solutions. Nanomaterials, 2021, 11, 433.	1.9	22
7	Implication of polymeric template agent on the formation process of hybrid halide perovskite films. Nanotechnology, 2021, 32, 265707.	1.3	13
8	Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks. Cell Reports Physical Science, 2021, 2, 100432.	2.8	18
9	Inclusion of 2D Transition Metal Dichalcogenides in Perovskite Inks and Their Influence on Solar Cell Performance. Nanomaterials, 2021, 11, 1706.	1.9	7
10	Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite. Journal of Science: Advanced Materials and Devices, 2021, 6, 543-550.	1.5	6
11	Robust, High-Performing Maize–Perovskite-Based Solar Cells with Improved Stability. ACS Applied Energy Materials, 2021, 4, 11194-11203.	2.5	11
12	Single-Source Thermal Ablation of halide perovskites, limitations and opportunities: The lesson of MAPbBr3. Journal of Alloys and Compounds, 2021, 875, 159954.	2.8	2
13	Experimental Strategy and Mechanistic View to Boost the Photocatalytic Activity of Cs ₃ Bi ₂ Br ₉ Leadâ€Free Perovskite Derivative by g ₃ N ₄ Composite Engineering. Advanced Functional Materials, 2021, 31, 2104428	7.8	53
14	Managing transparency through polymer/perovskite blending: A route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy, 2021, 89, 106406.	8.2	20
15	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021, 9, 9899-9906.	2.7	28
16	Polymerâ€Assisted Single‣tep Slotâ€Die Coating of Flexible Perovskite Solar Cells at Mild Temperature from Dimethyl Sulfoxide. ChemPlusChem, 2021, 86, 1442-1450.	1.3	16
17	Exploring the role of halide mixing in lead-free BZA ₂ SnX ₄ two dimensional hybrid perovskites. Journal of Materials Chemistry A, 2020, 8, 1875-1886.	5.2	21
18	The Effect of Extended Ball-Milling upon Three-Dimensional and Two-Dimensional Perovskite Crystals Properties. Applied Sciences (Switzerland), 2020, 10, 4775.	1.3	8

#	Article	IF	CITATIONS
19	All-Inorganic CsPbBr3 Perovskite Films Prepared by Single Source Thermal Ablation. Frontiers in Chemistry, 2020, 8, 313.	1.8	28
20	PEA ₂ SnBr ₄ : a water-stable lead-free two-dimensional perovskite and demonstration of its use as a co-catalyst in hydrogen photogeneration and organic-dye degradation. Journal of Materials Chemistry C, 2020, 8, 9189-9194.	2.7	54
21	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 18431-18436.	4.0	12
22	Biodegradable Carbon-based Ashes/Maize Starch Composite Films for Agricultural Applications. Polymers, 2020, 12, 524.	2.0	17
23	Nanostructured TiO ₂ Grown by Low-Temperature Reactive Sputtering for Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 6218-6229.	2.5	27
24	Quantum Nature of Light in Nonstoichiometric Bulk Perovskites. ACS Nano, 2019, 13, 10711-10716.	7.3	2
25	Rheological Tunability of Perovskite Precursor Solutions: From Spin Coating to Inkjet Printing Process. Nanomaterials, 2019, 9, 582.	1.9	31
26	Synthesis, Properties, and Modeling of Cs _{1–<i>x</i>} Rb <i>_x</i> SnBr ₃ Solid Solution: A New Mixed-Cation Lead-Free All-Inorganic Perovskite System. Chemistry of Materials, 2019, 31, 3527-3533.	3.2	30
27	Nitrogen Soaking Promotes Lattice Recovery inÂPolycrystalline Hybrid Perovskites. Advanced Energy Materials, 2019, 9, 1803450.	10.2	46
28	Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells. Nanomaterials, 2019, 9, 1627.	1.9	23
29	Addressing the Function of Easily Synthesized Hole Transporters in Direct and Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1069-1076.	2.5	33
30	Connecting the solution chemistry of PbI ₂ and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chemical Science, 2018, 9, 3200-3208.	3.7	55
31	Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene. Nanoscale, 2018, 10, 3198-3211.	2.8	6
32	GO/glucose/PEDOT:PSS ternary nanocomposites for flexible supercapacitors. Composites Part B: Engineering, 2018, 148, 149-155.	5.9	37
33	Room-temperature processed films of colloidal carved rod-shaped nanocrystals of reduced tungsten oxide as interlayers for perovskite solar cells. Physical Chemistry Chemical Physics, 2018, 20, 11396-11404.	1.3	12
34	Ambient condition retention of band-gap tuning in MAPbI ₃ induced by high pressure quenching. Chemical Communications, 2018, 54, 13212-13215.	2.2	21
35	Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. Nano Energy, 2018, 54, 400-408.	8.2	60
36	Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Scientific Reports, 2018, 8, 15496.	1.6	42

#	Article	IF	CITATIONS
37	Light-Induced Formation of Pb ³⁺ Paramagnetic Species in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 1840-1847.	8.8	28
38	Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates. Thin Solid Films, 2018, 657, 110-117.	0.8	5
39	Biodegradable extruded thermoplastic maize starch for outdoor applications. Journal of Thermal Analysis and Calorimetry, 2018, 134, 549-558.	2.0	11
40	Elucidating the effect of the lead iodide complexation degree behind the morphology and performance of perovskite solar cells. Nanoscale, 2017, 9, 3889-3897.	2.8	26
41	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. Nanotechnology, 2017, 28, 174001.	1.3	14
42	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2017, 7, 1602600.	10.2	78
43	Molecular Tailoring of Phenothiazine-Based Hole-Transporting Materials for High-Performing Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1029-1034.	8.8	134
44	Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 227-233.	3.0	17
45	Rheological and physical characterization of <scp>PEDOT</scp> : <scp>PSS</scp> /graphene oxide nanocomposites for perovskite solar cells. Polymer Engineering and Science, 2017, 57, 546-552.	1.5	25
46	Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	18
47	Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations. ACS Applied Materials & Interfaces, 2017, 9, 24778-24787.	4.0	71
48	Fully Vaporâ€Deposited Heterostructured Lightâ€Emitting Diode Based on Organoâ€Metal Halide Perovskite. Advanced Electronic Materials, 2016, 2, 1500325.	2.6	35
49	PEDOT:PSS/GO nanocomposites: Determination of the aspect ratio by indirect measurements. AIP Conference Proceedings, 2016, , .	0.3	0
50	Engineering TiO ₂ /Perovskite Planar Heterojunction for Hysteresis‣ess Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600493.	1.9	24
51	Cooperative Effect of GO and Glucose on PEDOT:PSS for High <i>V</i> _{OC} and Hysteresisâ€Free Solutionâ€Processed Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 6985-6994.	7.8	61
52	Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27966-27973.	4.0	38
53	Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy and Environmental Science, 2016, 9, 2682-2719.	15.6	122
54	The Bright Side of Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 4322-4334.	2.1	115

#	Article	IF	CITATIONS
55	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. IEEE Nanotechnology Magazine, 2016, 15, 725-730.	1.1	19
56	Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrin-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 9577-9585.	1.3	29
57	Photoinduced processes in macrocyclic isoalloxazine–anthracene systems. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 189-197.	2.0	3
58	Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells. , 2015, , .		0
59	X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum, 2015, 119, 159-162.	1.6	39
60	NiO/MAPbI _{3-x} Cl _{<i>x</i>} /PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 4283-4289.	4.0	59
61	Growing perovskite into polymers for easy-processable optoelectronic devices. Scientific Reports, 2015, 5, 7725.	1.6	78
62	Beneficial Role of a Bulky Donor Moiety in π-Extended Organic Dyes for Mesoscopic TiO ₂ Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 6956-6965.	1.5	7
63	Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1628-1637.	2.1	78
64	Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale, 2015, 7, 18956-18963.	2.8	80
65	Implications of TiO ₂ surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devices. Journal of Materials Chemistry A, 2015, 3, 20811-20818.	5.2	31
66	Synthesis of Reduced Graphite Oxide by a Novel Green Process Based on UV Light Irradiation. Science of Advanced Materials, 2015, 7, 2445-2451.	0.1	9
67	MAPbI _{3-x} Cl _x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Materials Research Society Symposia Proceedings, 2014, 1667, 41.	0.1	4
68	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. Materials Research Society Symposia Proceedings, 2014, 1667, 7.	0.1	2
69	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy and Environmental Science, 2014, 7, 1889-1894.	15.6	151
70	Stark Effect in Perovskite/TiO ₂ Solar Cells: Evidence of Local Interfacial Order. Nano Letters, 2014, 14, 2168-2174.	4.5	200
71	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 3532-3538.	2.1	175
72	Cyanobutaâ€1,3â€dienes as Novel Electron Acceptors for Photoactive Multicomponent Systems. Chemistry - A European Journal, 2014, 20, 202-216.	1.7	40

#	Article	IF	CITATIONS
73	MAPbI _{3-x} Cl _{<i>x</i>} Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials, 2013, 25, 4613-4618.	3.2	732
74	The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3494.	15.6	77
75	Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3381-3399.	3.2	586
76	Waterâ€Based Electrolytes for Dye‣ensitized Solar Cells. Advanced Materials, 2010, 22, 4505-4509.	11.1	156
77	Zn(ii) versus Ru(ii) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors. Energy and Environmental Science, 2010, 3, 1573.	15.6	40
78	Fullerene Derivatives Functionalized with Diethylamino‣ubstituted Conjugated Oligomers: Synthesis and Photoinduced Electron Transfer. Chemistry - A European Journal, 2009, 15, 8825-8833.	1.7	17
79	Solar to fuel. Nature Materials, 2009, 8, 929-930.	13.3	210
80	Preparation and photophysical studies of copper(I) and ruthenium(II) complexes of 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine. Inorganica Chimica Acta, 2009, 362, 1825-2	183 <mark>0.</mark>	9
81	Fullerene-rich dendrimers: divergent synthesis and photophysical properties. New Journal of Chemistry, 2009, 33, 337-344.	1.4	23
82	1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes. Chemical Society Reviews, 2009, 38, 1690.	18.7	346
83	Tunable photophysical properties of phenyleneethynylene based bipyridine ligands. Photochemical and Photobiological Sciences, 2009, 8, 1432.	1.6	17
84	Photoinduced electron transfer in a fullerene–oligophenylenevinylene dyad. New Journal of Chemistry, 2009, 33, 2174.	1.4	14
85	Photoinduced structural modifications in multicomponent architectures containing azobenzene moieties as photoswitchable cores. Journal of Materials Chemistry, 2009, 19, 4715.	6.7	47
86	Engineering of Supramolecular H-Bonded Nanopolygons via Self-Assembly of Programmed Molecular Modules. Journal of the American Chemical Society, 2009, 131, 509-520.	6.6	105
87	Synthesis, photophysical, electrochemical, and electrochemiluminescent properties of 5,15-bis(9-anthracenyl)porphyrin derivatives. Organic and Biomolecular Chemistry, 2009, 7, 2402.	1.5	27
88	Synthesis and electronic properties of fullerene derivatives substituted with oligophenylenevinylen–ferrocene conjugates. New Journal of Chemistry, 2008, 32, 54-64.	1.4	18
89	Heteroleptic Copper(I) Complexes Coupled with Methano[60]fullerene: Synthesis, Electrochemistry, and Photophysics. Inorganic Chemistry, 2008, 47, 6254-6261.	1.9	60
90	Dendritic Effects on Structure and Photophysical and Photoelectrochemical Properties of Fullerene Dendrimers and Their Nanoclusters. Journal of Physical Chemistry C, 2007, 111, 2777-2786.	1.5	51

#	Article	IF	CITATIONS
91	1,10-Phenanthrolines with Tunable Luminescence upon Protonation:  A Spectroscopic and Computational Study. Journal of Physical Chemistry A, 2007, 111, 7707-7718.	1.1	20
92	Photochemistry and Photophysics of Coordination Compounds: Copper. , 2007, , 69-115.		472
93	Novel Phenanthroline Ligands and Their Kinetically Locked Copper(I) Complexes with Unexpected Photophysical Properties. Inorganic Chemistry, 2006, 45, 2061-2067.	1.9	125
94	Synthesis and Excited-State Properties of an Oligophenylenevinylene Heptamer Substituted with Two Fullerene Moieties. Synlett, 2006, 2006, 3095-3099.	1.0	1