Giridhara R Jayandharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085623/publications.pdf

Version: 2024-02-01

47 papers

1,395 citations

430874 18 h-index 36 g-index

47 all docs

47 docs citations

47 times ranked

1723 citing authors

#	Article	IF	CITATIONS
1	Novel Properties of Tyrosine-mutant AAV2 Vectors in the Mouse Retina. Molecular Therapy, 2011, 19, 293-301.	8.2	234
2	Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Current Gene Therapy, 2014, 14, 86-100.	2.0	156
3	Adenoâ€associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Reviews in Medical Virology, 2013, 23, 399-413.	8.3	78
4	Bioengineering of AAV2 Capsid at Specific Serine, Threonine, or Lysine Residues Improves Its Transduction Efficiency <i>in Vitro</i> and <i>in Vivo</i> . Human Gene Therapy Methods, 2013, 24, 80-93.	2.1	73
5	Adeno-Associated Virus Serotype 6 Capsid Tyrosine-to-Phenylalanine Mutations Improve Gene Transfer to Skeletal Muscle. Human Gene Therapy, 2010, 21, 1343-1348.	2.7	72
6	Optimizing the transduction efficiency of capsid-modified AAV6 serotype vectors in primary human hematopoietic stem cells in vitro and in a xenograft mouse model in vivo. Cytotherapy, 2013, 15, 986-998.	0.7	70
7	Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3743-3748.	7.1	67
8	Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Scientific Reports, 2015, 5, 8229.	3.3	53
9	Postâ€translational modifications in capsid proteins of recombinant adenoâ€associated virus (<scp>AAV</scp>) 1â€rh10 serotypes. FEBS Journal, 2019, 286, 4964-4981.	4.7	53
10	Targeted Modifications in Adeno-Associated Virus Serotype 8 Capsid Improves Its Hepatic Gene Transfer Efficiency <i>In Vivo</i> . Human Gene Therapy Methods, 2013, 24, 104-116.	2.1	43
11	Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Scientific Reports, 2013, 3, 1832.	3.3	43
12	High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors. Vaccine, 2012, 30, 3908-3917.	3.8	41
13	Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines <i>In Vitro</i> and in Murine Hepatocytes <i>In Vivo</i> Journal of Virology, 2015, 89, 952-961.	3.4	40
14	Activation of the Cellular Unfolded Protein Response by Recombinant Adeno-Associated Virus Vectors. PLoS ONE, 2013, 8, e53845.	2.5	38
15	Optimized Adeno-Associated Virus (AAV)–Protein Phosphatase-5 Helper Viruses for Efficient Liver Transduction by Single-Stranded AAV Vectors: Therapeutic Expression of Factor IX at Reduced Vector Doses. Human Gene Therapy, 2010, 21, 271-283.	2.7	32
16	Developing Immunologically Inert Adeno-Associated Virus (AAV) Vectors for Gene Therapy: Possibilities and Limitations. Current Pharmaceutical Biotechnology, 2014, 14, 1072-1082.	1.6	26
17	AAV6 Vexosomes Mediate Robust Suicide Gene Delivery in a Murine Model of Hepatocellular Carcinoma. Molecular Therapy - Methods and Clinical Development, 2020, 17, 497-504.	4.1	21
18	The Adeno-Associated Virus Genome Packaging Puzzle. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2015, 09, .	0.1	19

#	Article	IF	CITATIONS
19	Vector engineering, strategies and targets in cancer gene therapy. Cancer Gene Therapy, 2022, 29, 402-417.	4.6	18
20	Mutations in coagulation factor XIII A gene in eight unrelated Indians. Thrombosis and Haemostasis, 2006, 95, 551-556.	3 . 4	16
21	Infectivity of adeno-associated virus serotypes in mouse testis. BMC Biotechnology, 2018, 18, 70.	3.3	16
22	Rational Engineering and Preclinical Evaluation of Neddylation and SUMOylation Site Modified Adeno-Associated Virus Vectors in Murine Models of Hemophilia B and Leber Congenital Amaurosis. Human Gene Therapy, 2019, 30, 1461-1476.	2.7	16
23	An efficient method to generate xenograft tumor models of acute myeloid leukemia and hepatocellular carcinoma in adult zebrafish. Blood Cells, Molecules, and Diseases, 2019, 75, 48-55.	1.4	16
24	Cellular unfolded protein response against viruses used in gene therapy. Frontiers in Microbiology, 2014, 5, 250.	3. 5	15
25	Molecular Engineering of Adeno-Associated Virus Capsid Improves Its Therapeutic Gene Transfer in Murine Models of Hemophilia and Retinal Degeneration. Molecular Pharmaceutics, 2019, 16, 4738-4750.	4.6	15
26	Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Frontiers in Pharmacology, 2017, 8, 441.	3 . 5	13
27	Safety of Adeno-associated virus-based vector-mediated gene therapy—impact of vector dose. Cancer Gene Therapy, 2022, 29, 1305-1306.	4.6	13
28	MicroRNA-15b Modulates Molecular Mediators of Blood Induced Arthropathy in Hemophilia Mice. International Journal of Molecular Sciences, 2016, 17, 492.	4.1	12
29	Combination Suicide Gene Delivery with an Adeno-Associated Virus Vector Encoding Inducible Caspase-9 and a Chemical Inducer of Dimerization Is Effective in a Xenotransplantation Model of Hepatocellular Carcinoma. Bioconjugate Chemistry, 2019, 30, 1754-1762.	3 . 6	12
30	Exosome-associated SUMOylation mutant AAV demonstrates improved ocular gene transfer efficiency in vivo. Virus Research, 2020, 283, 197966.	2.2	12
31	Diffuse Large B Cell Lymphoma in Wiskott-Aldrich Syndrome: A Case Report and Review of Literature. Indian Journal of Hematology and Blood Transfusion, 2014, 30, 309-313.	0.6	10
32	A CD33 Antigen-Targeted AAV6 Vector Expressing an Inducible Caspase-9 Suicide Gene Is Therapeutic in a Xenotransplantation Model of Acute Myeloid Leukemia. Bioconjugate Chemistry, 2019, 30, 2404-2416.	3.6	9
33	Targeted delivery of AAV-transduced mesenchymal stromal cells to hepatic tissue forex vivogene therapy. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1354-1364.	2.7	8
34	Analysis of hepatic and retinal cell microRNAome during AAV infection reveals their diverse impact on viral transduction and cellular physiology. Gene, 2020, 724, 144157.	2.2	8
35	Synergistic inhibition of PARPâ€1 and NFâ€ÎºB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy. European Journal of Immunology, 2016, 46, 154-166.	2.9	7
36	Improved ocular gene transfer with a Neddylation-site modified AAV-RPE65 vector in rd12 mice. Eye, 2020, 34, 1313-1315.	2.1	4

#	Article	IF	CITATIONS
37	MicroRNAâ€based recombinant AAV vector assembly improves efficiency of suicide gene transfer in a murine model of lymphoma. Cancer Medicine, 2020, 9, 3188-3201.	2.8	4
38	Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Molecular Pharmaceutics, 2021, 18, 2015-2031.	4.6	4
39	Molecular characterization of novel Adeno-associated virus variants infecting human tissues. Virus Research, 2019, 272, 197716.	2.2	3
40	Intracellular Trafficking of AAV5 Vectors. Human Gene Therapy Methods, 2016, 27, 47-48.	2.1	1
41	Visualization of Retinal Morphology in rd12 Mice by Scanning Electron Microscopy. Human Gene Therapy, 2019, 30, 921-922.	2.7	1
42	Gene Therapy: Contest between Adeno-Associated Virus and Host Cells and the Impact of UFMylation. Molecular Pharmaceutics, 2020, 17, 3649-3653.	4.6	1
43	Gene therapy for female infertility: A farfetched dream or reality?. Cell Reports Medicine, 2022, 3, 100641.	6.5	1
44	Polyketal-based nanocarriers: A new class of stimuli-responsive delivery systems for therapeutic applications. European Polymer Journal, 2022, 173, 111290.	5.4	1
45	Community Based Evaluation of Prevalence of Inhibitors in Patients with Severe Hemophilia A in India and Their Correlation with Environmental and Genetic Factors. Blood, 2012, 120, 3380-3380.	1.4	0
46	Mechanism of Synergy Between Bortezomib and Arsenic Trioxide in Acute Promyelocytic Leukemia and Clinical Efficacy in Relapsed Patients. Blood, 2012, 120, 3607-3607.	1.4	0
47	Genetic Diagnosis of Inherited Bleeding Disorders in 1250 Probands From India: A Single Centre Experience. Blood, 2012, 120, 1127-1127.	1.4	0