Amy J Knorpp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085496/publications.pdf

Version: 2024-02-01

567281 752698 20 822 15 20 citations h-index g-index papers 20 20 20 795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chemical Society Reviews, 2020, 49, 1449-1486.	38.1	170
2	Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2019, 2, 485-494.	34.4	140
3	On the Mechanism Underlying the Direct Conversion of Methane to Methanol by Copper Hosted in Zeolites; Braiding Cu K-Edge XANES and Reactivity Studies. Journal of the American Chemical Society, 2018, 140, 10090-10093.	13.7	95
4	Methane-to-Methanol via Chemical Looping: Economic Potential and Guidance for Future Research. Industrial & Description of the Research of the Methane Chemistry Research, 2019, 58, 8674-8680.	3.7	64
5	Copperâ€Exchanged Omega (MAZ) Zeolite: Copperâ€concentration Dependent Active Sites and its Unprecedented Methane to Methanol Conversion. ChemCatChem, 2018, 10, 5593-5596.	3.7	53
6	In Situ X-ray Photoelectron Spectroscopy Detects Multiple Active Sites Involved in the Selective Anaerobic Oxidation of Methane in Copper-Exchanged Zeolites. ACS Catalysis, 2019, 9, 6728-6737.	11.2	38
7	Oxidation of methane to methanol over Cu-exchanged zeolites: Scientia gratia scientiae or paradigm shift in natural gas valorization?. Journal of Catalysis, 2020, 385, 238-245.	6.2	35
8	Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials, 2020, 32, 1448-1453.	6.7	33
9	Paired Copper Monomers in Zeolite Omega: The Active Site for Methaneâ€toâ€Methanol Conversion. Angewandte Chemie - International Edition, 2021, 60, 5854-5858.	13.8	27
10	Properties Modification of Nanosized Hollow Zeolite Crystals by Desilication. ChemNanoMat, 2018, 4, 992-999.	2.8	25
11	Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol. Chemical Communications, 2019, 55, 11794-11797.	4.1	25
12	On isothermality in some commonly used plug flow reactors for X-ray based investigations of catalysts. Catalysis Science and Technology, 2019, 9, 3081-3089.	4.1	20
13	The influence of zeolite morphology on the conversion of methane to methanol on copper-exchanged omega zeolite (MAZ). Catalysis Science and Technology, 2019, 9, 2806-2811.	4.1	18
14	Unwanted effects of X-rays in surface grafted copper(<scp>ii</scp>) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Physical Chemistry Chemical Physics, 2020, 22, 6826-6837.	2.8	18
15	Undoped SnO ₂ as a Support for Ni Species to Boost Oxygen Generation through Alkaline Water Electrolysis. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18407-18420.	8.0	17
16	Pinpointing and Quantifying the Aluminum Distribution in Zeolite Catalysts Using Anomalous Scattering at the Al Absorption Edge. Journal of the American Chemical Society, 2021, 143, 17926-17930.	13.7	16
17	Mapping Vibrational Spectra to the Structures of Copper Species in Zeolites Based on Calculated Stretching Frequencies of Adsorbed Nitrogen and Carbon Monoxides. Journal of Physical Chemistry C, 2021, 125, 12094-12106.	3.1	11
18	Paired Copper Monomers in Zeolite Omega: The Active Site for Methaneâ€ŧoâ€Methanol Conversion. Angewandte Chemie, 2021, 133, 5918-5922.	2.0	8

Amy J Knorpp

#	Article	IF	CITATION
19	Copper-exchanged large-port and small-port mordenite (MOR) for methane-to-methanol conversion. RSC Advances, 2021, 11, 31058-31061.	3.6	5
20	BaTiO3-based thermistor hollow fibers prepared using a phase inversion spinning process for energy efficient gas sorption. Journal of the European Ceramic Society, 2022, 42, 981-992.	5.7	4