Bifeng Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085205/publications.pdf Version: 2024-02-01

RIFENC HU

#	Article	IF	CITATIONS
1	Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 2017, 14, 1042.	1.2	285
2	Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 2021, 780, 146494.	3.9	261
3	Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environmental Pollution, 2020, 266, 114961.	3.7	257
4	Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 2019, 337, 1309-1319.	2.3	200
5	Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. Journal of Hazardous Materials, 2020, 393, 122424.	6.5	133
6	Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environmental Pollution, 2020, 262, 114308.	3.7	126
7	A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment, 2019, 655, 273-283.	3.9	124
8	A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: A case study in the Yangtze Delta, China. Environmental Pollution, 2019, 250, 601-609.	3.7	101
9	Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE, 2017, 12, e0172438.	1.1	94
10	Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Science of the Total Environment, 2019, 658, 614-625.	3.9	90
11	Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta. Environmental Science and Pollution Research, 2017, 24, 19816-19826.	2.7	78
12	Soil erosion modelling: A bibliometric analysis. Environmental Research, 2021, 197, 111087.	3.7	78
13	Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere, 2022, 289, 133182.	4.2	54
14	Depth-to-bedrock map of China at a spatial resolution of 100 meters. Scientific Data, 2020, 7, 2.	2.4	49
15	Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environmental Pollution, 2021, 270, 116196.	3.7	46
16	Heavy Metal Pollution Delineation Based on Uncertainty in a Coastal Industrial City in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 2018, 15, 710.	1.2	42
17	Downscaling annual precipitation with <scp>TMPA</scp> and land surface characteristics in China. International Journal of Climatology, 2017, 37, 5107-5119.	1.5	41
18	Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). Journal of Environmental Management, 2020, 271, 110943.	3.8	41

BIFENG HU

#	Article	IF	CITATIONS
19	Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet. Geoderma, 2021, 382, 114713.	2.3	39
20	Monitoring soil organic carbon in alpine soils using in situ visâ€NIR spectroscopy and a multilayer perceptron. Land Degradation and Development, 2020, 31, 1026-1038.	1.8	37
21	Composite assessment of human health risk from potentially toxic elements through multiple exposure routes: A case study in farmland in an important industrial city in East China. Journal of Geochemical Exploration, 2020, 210, 106443.	1.5	37
22	Probability mapping of soil thickness by random survival forest at a national scale. Geoderma, 2019, 344, 184-194.	2.3	36
23	A comprehensive framework for assessing the impact of potential agricultural pollution on grain security and human health in economically developed areas. Environmental Pollution, 2020, 263, 114653.	3.7	35
24	Evaluating validation strategies on the performance of soil property prediction from regional to continental spectral data. Geoderma, 2021, 400, 115159.	2.3	32
25	Source Identification and Apportionment of Trace Elements in Soils in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 2018, 15, 1240.	1.2	30
26	Improvement of Spatial Modeling of Cr, Pb, Cd, As and Ni in Soil Based on Portable X-ray Fluorescence (PXRF) and Geostatistics: A Case Study in East China. International Journal of Environmental Research and Public Health, 2019, 16, 2694.	1.2	30
27	Stoichiometry of soil carbon, nitrogen, and phosphorus in farmland soils in southern China: Spatial pattern and related dominates. Catena, 2022, 217, 106468.	2.2	24
28	Assessment of Heavy Metal Pollution in Soil and Classification of Pollution Risk Management and Control Zones in the Industrial Developed City. Environmental Management, 2020, 66, 1105-1119.	1.2	23
29	Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province, East China: Sensitivity analysis, parameter optimisation, and forecast for 2050. Journal of Cleaner Production, 2021, 279, 123674.	4.6	23
30	An integrated assessment methodology for management of potentially contaminated sites based on public data. Science of the Total Environment, 2021, 783, 146913.	3.9	21
31	Predicting annual PM2.5 in mainland China from 2014 to 2020 using multi temporal satellite product: An improved deep learning approach with spatial generalization ability. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 141-158.	4.9	19
32	Estimating spatial and temporal variation in ocean surface pCO2 in the Gulf of Mexico using remote sensing and machine learning techniques. Science of the Total Environment, 2020, 745, 140965.	3.9	17
33	Improved Mapping of Potentially Toxic Elements in Soil via Integration of Multiple Data Sources and Various Geostatistical Methods. Remote Sensing, 2020, 12, 3775.	1.8	16
34	Spatial variability and potential controls of soil organic matter in the Eastern Dongting Lake Plain in southern China. Journal of Soils and Sediments, 2021, 21, 2791-2804.	1.5	16
35	Comprehensive source identification and apportionment analysis of five heavy metals in soils in Wenzhou City, China. Environmental Geochemistry and Health, 2022, 44, 579-602.	1.8	14
36	Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sensing, 2020, 12, 4043.	1.8	11

Bifeng Hu

#	Article	IF	CITATIONS
37	Developing pedotransfer functions to harmonize extractable soil phosphorus content measured with different methods: A case study across the mainland of France. Geoderma, 2021, 381, 114645.	2.3	11
38	Current Status and Temporal Trend of Potentially Toxic Elements Pollution in Agricultural Soil in the Yangtze River Delta Region: A Meta-Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 1033.	1.2	10
39	Pollution Characteristics, Spatial Patterns, and Sources of Toxic Elements in Soils from a Typical Industrial City of Eastern China. Land, 2021, 10, 1126.	1.2	9
40	Preliminary risk assessment of regional industrial enterprise sites based on big data. Science of the Total Environment, 2022, 838, 156609.	3.9	9
41	Sea Surface Salinity Estimation and Spatial-Temporal Heterogeneity Analysis in the Gulf of Mexico. Remote Sensing, 2021, 13, 881.	1.8	6
42	Modeling Cadmium Contents in a Soil–Rice System and Identifying Potential Controls. Land, 2022, 11, 617.	1.2	4