Carolina Guardiola-Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2085081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto GuadalentÃn Basin (Spain) case study. Engineering Geology, 2015, 198, 40-52.	6.3	67
2	Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology, 2017, 547, 678-689.	5.4	67
3	Potential Impacts of Climate Change on Groundwater Supplies to the Doñana Wetland, Spain. Wetlands, 2011, 31, 907-920.	1.5	52
4	Subsidence activity maps derived from DInSAR data: Orihuela case study. Natural Hazards and Earth System Sciences, 2014, 14, 1341-1360.	3.6	43
5	Interpolation of GPS and Geological Data Using InSAR Deformation Maps: Method and Application to Land Subsidence in the Alto GuadalentÃn Aquifer (SE Spain). Remote Sensing, 2016, 8, 965.	4.0	42
6	Towards flexible groundwater-level prediction for adaptive water management: using Facebook's Prophet forecasting approach. Hydrological Sciences Journal, 2019, 64, 1504-1518.	2.6	34
7	Clustering Groundwater Level Time Series of the Exploited Almonte-Marismas Aquifer in Southwest Spain. Water (Switzerland), 2020, 12, 1063.	2.7	30
8	Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models. Remote Sensing, 2016, 8, 604.	4.0	26
9	Estimating extremely large amounts of missing precipitation data. Journal of Hydroinformatics, 2020, 22, 578-592.	2.4	24
10	Groundwater and Subsidence Modeling Combining Geological and Multi-Satellite SAR Data over the Alto GuadalentÃn Aquifer (SE Spain). Geofluids, 2017, 2017, 1-17.	0.7	23
11	Determining groundwater recharge and vapor flow in dune sediments using a weighable precision meteo lysimeter. Science of the Total Environment, 2019, 656, 550-557.	8.0	21
12	Improving multi-technique monitoring using Sentinel-1 and Cosmo-SkyMed data and upgrading groundwater model capabilities. Science of the Total Environment, 2020, 703, 134757.	8.0	21
13	Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain). Journal of Hydrology, 2012, 470-471, 124-137.	5.4	19
14	3D groundwater flow and deformation modelling of Madrid aquifer. Journal of Hydrology, 2020, 585, 124773.	5.4	14
15	Karst massif susceptibility from rock matrix, fracture and conduit porosities: a case study of the Sierra de las Nieves (Málaga, Spain). Environmental Earth Sciences, 2015, 74, 7583-7592.	2.7	12
16	Analysing flash flood risk perception through a geostatistical approach in the village of Navaluenga, Central Spain. Journal of Flood Risk Management, 2020, 13, e12590.	3.3	12
17	Climate Influence Vs. Local Drivers in Surface Water-Groundwater Interactions in Eight Ponds of Doñana National Park (Southern Spain). Wetlands, 2021, 41, 1.	1.5	12
18	XRCT images and variograms reveal 3D changes in wood density of riparian trees affected by floods. Trees - Structure and Function, 2015, 29, 1115-1126.	1.9	11

#	Article	IF	CITATIONS
19	Comparison of Recharge Estimation Methods During a Wet Period in a Karst Aquifer. Ground Water, 2015, 53, 885-895.	1.3	11
20	Unraveling the Hydrological Behavior of a Coastal Pond in Doñana National Park (Southwest Spain). Ground Water, 2019, 57, 895-906.	1.3	11
21	Applying 3D Geostatistical Simulation to Improve the Groundwater Management Modelling of Sedimentary Aquifers: The Case of Doñana (Southwest Spain). Water (Switzerland), 2019, 11, 39.	2.7	11
22	Relevance of spatio-temporal rainfall variability regarding groundwater management challenges under global change: case study in Doñana (SW Spain). Stochastic Environmental Research and Risk Assessment, 2020, 34, 1289-1311.	4.0	11
23	Spatiotemporal Geostatistical Analysis of Groundwater Level in Aquifer Systems of Complex Hydrogeology. Water Resources Research, 2022, 58, .	4.2	11
24	Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. Quantitative Geology and Geostatistics, 2001, , 67-78.	0.1	9
25	The Manning's Roughness Coefficient Calibration Method to Improve Flood Hazard Analysis in the Absence of River Bathymetric Data: Application to the Urban Historical Zamora City Centre in Spain. Applied Sciences (Switzerland), 2021, 11, 9267.	2.5	9
26	Structural controls on karstic conduits in a collisional orogen (Sierra de las Nieves, Betic) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf	50 462 Td
27	Modeling historical subsidence due to groundwater withdrawal in the Alto GuadalentÃn aquifer-system (Spain). Engineering Geology, 2021, 283, 105998.	6.3	8
28	How to Improve Dendrogeomorphic Sampling: Variogram Analyses of Wood Density Using X-Ray Computed Tomography. Tree-Ring Research, 2015, 71, 25-36.	0.6	7
29	Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study. Proceedings of the International Association of Hydrological Sciences, 0, 382, 353-359.	1.0	7
30	Compositional Bayesian indicator estimation. Stochastic Environmental Research and Risk Assessment, 2011, 25, 835-849.	4.0	6
31	Selecting Suitable MODFLOW Packages to Model Pond–Groundwater Relations Using a Regional Model. Water (Switzerland), 2021, 13, 1111.	2.7	6
32	Stakeholders' Perspective on Groundwater Management in Four Water-Stressed Mediterranean Areas: Priorities and Challenges. Land, 2022, 11, 738.	2.9	5
33	SlugIn 1.0: A Free Tool for Automated Slug Test Analysis. Ground Water, 2018, 56, 362-365.	1.3	3
34	Automatic Modeling of Cross-Covariances for Rainfal Estimation Using Raingage and Radar Data. , 2004, , 391-399.		3
35	Application of multi-sensor advanced DInSAR analysis to severe land subsidence recognition: Alto GuadalentÃn Basin (Spain). Proceedings of the International Association of Hydrological Sciences, 0, 372, 45-48.	1.0	2
36	Understanding the dynamic behaviour for the Madrid aquifer (Spain): insights from the integration of A-DInSAR and 3-D groundwater flow and geomechanical models. Proceedings of the International Association of Hydrological Sciences, 0, 382, 409-414.	1.0	2

3

#	Article	IF	CITATIONS
37	Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics. Catena, 2022, 208, 105788.	5.0	2
38	Automated convective and stratiform precipitation estimation in a small mountainous catchment using X-band radar data in Central Spain. Journal of Hydroinformatics, 2017, 19, 315-330.	2.4	1
39	Integral Porosity Estimation of the Sierra de Las Nieves Karst Aquifer (Málaga, Spain). , 2015, , 277-283.		1
40	Evaluation of the potential of InSAR time series to study the spatio-temporal evolution of piezometric levels in the Madrid aquifer. Proceedings of the International Association of Hydrological Sciences, 0, 372, 29-32.	1.0	1
41	Métodos geoestadÃsticos para la elaboración de mapas de probabilidad de riesgo hidrogeotóxico (HGT) por altas concentraciones de As en las aguas subterráneas. Aplicación a la distribución de HGT en la provincia de Ãvila (España). IngenierÃa Del Agua, 2017, 21, 71.	0.4	0