Margherita Maiuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084651/publications.pdf

Version: 2024-02-01

69 papers 3,169 citations

331670 21 h-index 53 g-index

72 all docs

72 docs citations

times ranked

72

4637 citing authors

#	Article	IF	CITATIONS
1	Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies. Journal of Physical Chemistry C, 2022, 126, 6308-6317.	3.1	9
2	Allâ€Optical Reconfiguration of Ultrafast Dichroism in Gold Metasurfaces. Advanced Optical Materials, 2022, 10, .	7.3	6
3	Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of <i>Spirulina platensis</i> probed by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2022, 156, 164202.	3.0	3
4	Direct Evidence for Excitation Energy Transfer Limitations Imposed by Low-Energy Chlorophylls in Photosystem I–Light Harvesting Complex I of Land Plants. Journal of Physical Chemistry B, 2021, 125, 3566-3573.	2.6	6
5	Editorial: Vibrationally-Mediated Chemical Dynamics. Frontiers in Chemistry, 2021, 9, 681457.	3.6	O
6	Magneto-Optical Stark Effect in Fe-Doped CdS Nanocrystals. Nano Letters, 2021, 21, 3798-3804.	9.1	6
7	Ultrafast electron–hole relaxation dynamics in CdS nanocrystals. JPhys Materials, 2021, 4, 034005.	4.2	2
8	Singlet Fission in Dideuterated Tetracene and Pentacene. ChemPhotoChem, 2021, 5, 758-763.	3.0	3
9	Dissecting Interlayer Hole and Electron Transfer in Transition Metal Dichalcogenide Heterostructures via Two-Dimensional Electronic Spectroscopy. Nano Letters, 2021, 21, 4738-4743.	9.1	29
10	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	2.2	4
11	Permanent Dipole Moments Enhance Electronic Coupling and Singlet Fission in Pentacene. Journal of Physical Chemistry Letters, 2021, 12, 7453-7458.	4.6	9
12	Vibrational Dephasing along the Reaction Coordinate of an Electron Transfer Reaction. Journal of the American Chemical Society, 2021, 143, 14511-14522.	13.7	18
13	In Silico Ultrafast Nonlinear Spectroscopy Meets Experiments: The Case of Perylene Bisimide Dye. Journal of Chemical Theory and Computation, 2021, 17, 7134-7145.	5.3	6
14	Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores. Chemistry - A European Journal, 2021, 27, 16389-16400.	3.3	9
15	(INVITED) Design of symmetric nanoresonators to scale the ultrafast optical modulation in plasmonic metasurfaces. Optical Materials: X, 2021, 12, 100101.	0.8	1
16	Ultrafast Spectroscopy: State of the Art and Open Challenges. Journal of the American Chemical Society, 2020, 142, 3-15.	13.7	183
17	Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces. Nature Photonics, 2020, 14, 723-727.	31.4	48
18	Frontispiece: Singlet Heterofission in Tetracene–Pentacene Thinâ€Film Blends. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0

#	Article	IF	CITATIONS
19	Singlet Heterofission in Tetracene–Pentacene Thinâ€Film Blends. Angewandte Chemie, 2020, 132, 20141-20148.	2.0	1
20	Singlet Heterofission in Tetracene–Pentacene Thinâ€Film Blends. Angewandte Chemie - International Edition, 2020, 59, 19966-19973.	13.8	8
21	Frontispiz: Singlet Heterofission in Tetracene–Pentacene Thinâ€Film Blends. Angewandte Chemie, 2020, 132, .	2.0	0
22	Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11289-11298.	7.1	18
23	Strongly Coupled Coherent Phonons in Single-Layer MoS ₂ . ACS Nano, 2020, 14, 5700-5710.	14.6	44
24	Ultrafast excited-state dynamics in land plants Photosystem I core and whole supercomplex under oxidised electron donor conditions. Photosynthesis Research, 2020, 144, 221-233.	2.9	12
25	Modulating the Electronic and Solidâ€State Structure of Organic Semiconductors by Siteâ€Specific Substitution: The Case of Tetrafluoropentacenes. Chemistry - A European Journal, 2020, 26, 3420-3434.	3.3	16
26	Ultrafast Dynamics of Nonrigid Zinc-Porphyrin Arrays Mimicking the Photosynthetic "Special Pair― Journal of Physical Chemistry Letters, 2020, 11, 3443-3450.	4.6	11
27	Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics, 2020, 10, 247-257.	6.0	20
28	Sub-100 fs Hole Transfer Dynamics in WS2/MoS2 Heterostructure Probed by Two-Dimensional Electronic Spectroscopy. , 2020, , .		0
29	Energy Transfer pathways in PSI-LHCI probed by Two-Dimensional Electronic Spectroscopy. , 2020, , .		0
30	Coherent wavepackets in the Fenna-Matthews-Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. EPJ Web of Conferences, 2019, 205, 10008.	0.3	0
31	How to Identify FRET in 2D Spectroscopy, an Answer from "Noise― CheM, 2019, 5, 1928-1929.	11.7	0
32	Binary small molecule organic nanoparticles exhibit both direct and diffusion-limited ultrafast charge transfer with NIR excitation. Nanoscale, 2019, 11, 2385-2392.	5.6	4
33	Electronic Couplings in (Bio-) Chemical Processes. Topics in Current Chemistry Collections, 2019, , 27-61.	0.5	1
34	2D Spectroscopy Helps Visualize the Influence of Spectral Motion on Chromophore Response. CheM, 2018, 4, 20-21.	11.7	2
35	Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nature Chemistry, 2018, 10, 177-183.	13.6	93
36	Electronic Couplings in (Bio-) Chemical Processes. Topics in Current Chemistry, 2018, 376, 10.	5.8	7

3

#	Article	IF	Citations
37	High Magnetic Field Detunes Vibronic Resonances in Photosynthetic Light Harvesting. Journal of Physical Chemistry Letters, 2018, 9, 5548-5554.	4.6	18
38	Solvent-dependent photo-induced dynamics in a non-rigidly linked zinc phthalocyanine–perylenediimide dyad probed using ultrafast spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 21078-21089.	2.8	5
39	Tracking the coherent generation of polaron pairs in conjugated polymers. Nature Communications, 2016, 7, 13742.	12.8	149
40	Debuting in Research: The Vision of Two ENI Award Winners. Chemistry of Materials, 2016, 28, 409-410.	6.7	0
41	Coherent Spectroscopy of PDI-based Artificial Light-Harvesting Antenna. , 2016, , .		1
42	Coherent ultrafast polaron pair formation in a conjugated polymer at room temperature. , 2016, , .		0
43	Coherent vibronic coupling in a conjugated polymer at room temperature. , 2016, , .		1
44	Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy — Observation of a candidate promoting vibration. Journal of Inorganic Biochemistry, 2015, 153, 128-135.	3.5	13
45	Ultrafast Intramolecular Relaxation and Waveâ€Packet Motion in a Rutheniumâ€Based Supramolecular Photocatalyst. Chemistry - A European Journal, 2015, 21, 7668-7674.	3.3	24
46	The Nature of Singlet Exciton Fission in Carotenoid Aggregates. Journal of the American Chemical Society, 2015, 137, 5130-5139.	13.7	152
47	Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium. Journal of Chemical Physics, 2015, 142, 212433.	3.0	24
48	Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes. Biophysical Journal, 2015, 109, 1885-1898.	0.5	7
49	Probing Coherent Ultrafast Exciton Dissociation in a Polymer:Fullerene Photovoltaic Absorber. , 2015, , .		0
50	Two-dimensional electronic spectroscopy with birefringent wedges. Review of Scientific Instruments, 2014, 85, 123107.	1.3	90
51	Coherent ultrafast charge transfer in an organic photovoltaic blend. , 2014, , .		0
52	2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line. Optics Express, 2014, 22, 9063.	3.4	28
53	Wavepacket Splitting and Twoâ€Pathway Deactivation in the Photoexcited Visual Pigment Isorhodopsin. Angewandte Chemie - International Edition, 2014, 53, 2504-2507.	13.8	45
54	Coherent ultrafast charge transfer in an organic photovoltaic blend. Science, 2014, 344, 1001-1005.	12.6	470

#	Article	IF	CITATIONS
55	Interplay between Strong Coupling and Radiative Damping of Excitons and Surface Plasmon Polaritons in Hybrid Nanostructures. ACS Nano, 2014, 8, 1056-1064.	14.6	97
56	Utilizing Ancillary Ligands to Optimize the Photophysical Properties of 4 <i>H</i> â€lmidazole Ruthenium Dyes. ChemPhysChem, 2013, 14, 2973-2983.	2.1	13
57	Activated Singlet Exciton Fission in a Semiconducting Polymer. Journal of the American Chemical Society, 2013, 135, 12747-12754.	13.7	143
58	Panchromatic "Dye-Doped―Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-Response. Journal of Physical Chemistry Letters, 2013, 4, 442-447.	4.6	14
59	Hot exciton dissociation in polymer solar cells. Nature Materials, 2013, 12, 29-33.	27.5	567
60	Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nature Photonics, 2013, 7, 128-132.	31.4	371
61	Ultrafast Energy Transfer and Excited State Coupling in an Artificial Photosynthetic Antenna. Journal of Physical Chemistry B, 2013, 117, 14183-14190.	2.6	18
62	Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nature Communications, 2013, 4, 1602.	12.8	239
63	Explaining the Temperature Dependence of Spirilloxanthin's S* Signal by an Inhomogeneous Ground State Model. Journal of Physical Chemistry A, 2013, 117, 6303-6310.	2.5	22
64	Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in J-aggregate/metal hybrid nanostructures. , 2013, , .		3
65	Quantum coherence controls the charge separation in a prototypical artificial light harvesting system. , 2013, , .		1
66	Ultrafast hot exciton dissociation at organic interfaces. , 2013, , .		0
67	Ultrafast Charge Separation in Low Band-Gap Polymer Blend for Photovoltaics. EPJ Web of Conferences, 2013, 41, 04010.	0.3	1
68	Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. Physical Chemistry Chemical Physics, 2012, 14, 6312.	2.8	31
69	Ultrafast internal conversion in a low band gap polymer for photovoltaics: experimental and theoretical study. Physical Chemistry Chemical Physics, 2012, 14, 6367.	2.8	43