
## Tommaso Patriarchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084427/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 2018, 360, .                                                                                                        | 12.6 | 773       |
| 2  | Dissociable dopamine dynamics for learning and motivation. Nature, 2019, 570, 65-70.                                                                                                                                    | 27.8 | 487       |
| 3  | An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature Methods, 2020, 17, 1147-1155.                                                                                                             | 19.0 | 134       |
| 4  | Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement.<br>ELife, 2018, 7, .                                                                                                   | 6.0  | 125       |
| 5  | Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 2020, 11, 471.                                                                        | 12.8 | 102       |
| 6  | Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature, 2021, 590, 451-456.                                                                                                                  | 27.8 | 100       |
| 7  | Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 2020, 23, 15-20.                                                                          | 14.8 | 97        |
| 8  | Phosphorylation of Ser <sup>1928</sup> mediates the enhanced activity of the L-type Ca <sup>2+</sup> channel Ca <sub>v</sub> 1.2 by the l² <sub>2</sub> -adrenergic receptor in neurons. Science Signaling, 2017, 10, . | 3.6  | 91        |
| 9  | Ser <sup>1928</sup> phosphorylation by PKA stimulates the L-type Ca <sup>2+</sup> channel Ca<br><sub>V</sub> 1.2 and vasoconstriction during acute hyperglycemia and diabetes. Science Signaling,<br>2017, 10, .        | 3.6  | 85        |
| 10 | Striatal-enriched Protein-tyrosine Phosphatase (STEP) Regulates Pyk2 Kinase Activity. Journal of<br>Biological Chemistry, 2012, 287, 20942-20956.                                                                       | 3.4  | 77        |
| 11 | β <sub>2</sub> -Adrenergic receptor supports prolonged theta tetanus-induced LTP. Journal of<br>Neurophysiology, 2012, 107, 2703-2712.                                                                                  | 1.8  | 69        |
| 12 | GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells. European Journal of Human Genetics, 2015, 23, 195-201.                                                | 2.8  | 65        |
| 13 | Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO Journal, 2014, 33, 1341-53.                                                                                                   | 7.8  | 64        |
| 14 | A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron, 2021, 109, 1791-1809.e11.                                                                                                                        | 8.1  | 62        |
| 15 | Adenylyl Cyclase Anchoring by a Kinase Anchor Protein AKAP5 (AKAP79/150) Is Important for<br>Postsynaptic β-Adrenergic Signaling. Journal of Biological Chemistry, 2013, 288, 17918-17931.                              | 3.4  | 61        |
| 16 | Phosphorylation of Ca <sub>v</sub> 1.2 on S1928 uncouples the Lâ€ŧype Ca <sup>2+</sup> channel from the l² <sub>2</sub> adrenergic receptor. EMBO Journal, 2016, 35, 1330-1345.                                         | 7.8  | 61        |
| 17 | Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA<br>and Ca <sup>2+</sup> /CaMKII signaling. EMBO Journal, 2018, 37, .                                                | 7.8  | 57        |
| 18 | Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/â^'<br>patients and in foxg1+/â^' mice. European Journal of Human Genetics, 2016, 24, 871-880.                       | 2.8  | 54        |

Tommaso Patriarchi

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | α-Actinin Anchors PSD-95 at Postsynaptic Sites. Neuron, 2018, 97, 1094-1109.e9.                                                                                                                                          | 8.1  | 53        |
| 20 | A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nature Methods, 2022, 19, 231-241.                                                                                                             | 19.0 | 50        |
| 21 | Ca <sup>2+</sup> /calmodulin binding to <scp>PSD</scp> â€95 mediates homeostatic synaptic scaling<br>down. EMBO Journal, 2018, 37, 122-138.                                                                              | 7.8  | 36        |
| 22 | A Bright and Colorful Future for G-Protein Coupled Receptor Sensors. Frontiers in Cellular<br>Neuroscience, 2020, 14, 67.                                                                                                | 3.7  | 35        |
| 23 | A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor.<br>Neuropsychopharmacology, 2021, 46, 2043-2047.                                                                              | 5.4  | 35        |
| 24 | Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators.<br>Nature Protocols, 2019, 14, 3471-3505.                                                                              | 12.0 | 33        |
| 25 | Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis typeÂ1. ELife, 2019, 8, .                                                                                   | 6.0  | 33        |
| 26 | GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging.<br>International Journal of Molecular Sciences, 2020, 21, 8048.                                                                | 4.1  | 32        |
| 27 | Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle, 2016, 15, 3278-3295.                                               | 2.6  | 30        |
| 28 | α-Actinin Promotes Surface Localization and Current Density of the Ca <sup>2+</sup> Channel<br>Ca <sub>V</sub> 1.2 by Binding to the IQ Region of the α1 Subunit. Biochemistry, 2017, 56, 3669-3681.                     | 2.5  | 21        |
| 29 | L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication<br>for CaV1.2-mediated control of cochlear BDNF expression. Frontiers in Molecular Neuroscience, 2013,<br>6, 20. | 2.9  | 15        |
| 30 | Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Scientific Reports, 2018, 8, 3556.                                                                                                      | 3.3  | 15        |
| 31 | Multimodal detection of dopamine by sniffer cells expressing genetically encoded fluorescent sensors. Communications Biology, 2022, 5, .                                                                                 | 4.4  | 10        |
| 32 | Cyclin G2 Contributes to the Cell Cycle Arrest Response of Breast Cancer Cells to Estrogen<br>Signalingâ€Antagonists and the AMPK Agonist, Metformin. FASEB Journal, 2015, 29, 576.10.                                   | 0.5  | 3         |
| 33 | Abstract 4559: Knockdown of cyclin G2 expression hinders the cell cycle arrest response of MCF-7 cells to estrogen receptor signaling-antagonists and treatment with the antidiabetic metformin. , 2014, , .             |      | 0         |
| 34 | State of the art imaging of neurotransmission in animal models. Journal of Neuroscience Methods, 2022, 376, 109623.                                                                                                      | 2.5  | 0         |