
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release. Neuron, 2001, 29, 197-208.	3.8	487
2	CD31 â^' but Not CD31 + Cardiac Side Population Cells Exhibit Functional Cardiomyogenic Differentiation. Circulation Research, 2005, 97, 52-61.	2.0	487
3	Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development (Cambridge), 2001, 128, 5181-5188.	1.2	466
4	Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines. Neuron, 1999, 22, 115-124.	3.8	400
5	Side population cells and Bcrp1 expression in lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L97-L104.	1.3	247
6	Stimulation of Collagen Formation by Insulin and Insulin-Like Growth Factor I in Cultures of Human Lung Fibroblasts*. Endocrinology, 1989, 124, 964-970.	1.4	218
7	Restoration of Cardiac Progenitor Cells After Myocardial Infarction by Self-Proliferation and Selective Homing of Bone Marrow–Derived Stem Cells. Circulation Research, 2005, 97, 1090-1092.	2.0	217
8	NR2B-Containing Receptors Mediate Cross Talk among Hippocampal Synapses. Journal of Neuroscience, 2004, 24, 4767-4777.	1.7	179
9	Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L790-L796.	1.3	173
10	Programmed Cell Death Contributes to Postnatal Lung Development. American Journal of Respiratory Cell and Molecular Biology, 1998, 18, 786-793.	1.4	170
11	The Prolonged Life-Span of Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 380-385.	1.4	168
12	Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nature Genetics, 1998, 19, 289-291.	9.4	156
13	Akt Signaling Regulates Side Population Cell Phenotype via Bcrp1 Translocation. Journal of Biological Chemistry, 2003, 278, 39068-39075.	1.6	142
14	Optical Quantal Analysis Reveals a Presynaptic Component of LTP at Hippocampal Schaffer-Associational Synapses. Neuron, 2003, 38, 797-804.	3.8	141
15	Expression of Long-Term Plasticity at Individual Synapses in Hippocampus Is Graded, Bidirectional, and Mainly Presynaptic: Optical Quantal Analysis. Neuron, 2009, 62, 242-253.	3.8	135
16	Evidence that Bone Marrow Cells Do Not Contribute to the Alveolar Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 335-342.	1.4	115
17	Isolation of an Adult Mouse Lung Mesenchymal Progenitor Cell Population. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 152-159.	1.4	107
18	Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L432-L438.	1.3	103

#	Article	IF	CITATIONS
19	Adiponectin Attenuates Lipopolysaccharide-Induced Acute Lung Injury through Suppression of Endothelial Cell Activation. Journal of Immunology, 2012, 188, 854-863.	0.4	93
20	Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry. Development (Cambridge), 2013, 140, 4398-4406.	1.2	85
21	Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Scientific Reports, 2016, 6, 38276.	1.6	84

Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (<i>Danio) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50

23	Lung stem cells. Cell and Tissue Research, 2008, 331, 145-156.	1.5	78
24	A Shh/miR-206/BDNF Cascade Coordinates Innervation and Formation of Airway Smooth Muscle. Journal of Neuroscience, 2011, 31, 15407-15415.	1.7	76
25	Optical Quantal Analysis Indicates That Long-Term Potentiation at Single Hippocampal Mossy Fiber Synapses Is Expressed through Increased Release Probability, Recruitment of New Release Sites, and Activation of Silent Synapses. Journal of Neuroscience, 2004, 24, 3618-3626.	1.7	73
26	Origin and phenotype of lung side population cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L477-L483.	1.3	67
27	Postsynaptic Calcium Transients Evoked by Activation of Individual Hippocampal Mossy Fiber Synapses. Journal of Neuroscience, 2001, 21, 2206-2214.	1.7	61
28	Sustained Expression of α ₁ -Antitrypsin after Transplantation of Manipulated Hematopoietic Stem Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 133-141.	1.4	59
29	Stem cell antigen-1 expression in the pulmonary vascular endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L990-L996.	1.3	56
30	The effect of PGE2 on the activation of quiescent lung fibroblasts. Prostaglandins, 1987, 33, 903-913.	1.2	55
31	FasL promoter activation by IL-2 through SP1 and NFAT but not Egr-2 and Egr-3. European Journal of Immunology, 1999, 29, 3456-3465.	1.6	55
32	TRAIL expression in vascular smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1045-L1050.	1.3	55
33	Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice. Journal of Clinical Investigation, 2014, 124, 801-811.	3.9	55
34	Structure and expression of the promoter for the R4/ALK5 human type I transforming growth factor-β receptor: regulation by TGF-β. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 243-248.	1.9	53
35	State-Dependent Mechanisms of LTP Expression Revealed by Optical Quantal Analysis. Neuron, 2006, 52, 649-661.	3.8	53
36	Age-Related Dopaminergic Innervation Augments T Helper 2-Type Allergic Inflammation in the Postnatal Lung. Immunity, 2019, 51, 1102-1118.e7.	6.6	53

#	Article	IF	CITATIONS
37	Embryonic Lung Side Population Cells Are Hematopoietic and Vascular Precursors. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 32-40.	1.4	52

 $_{38}$ Distribution and functional organization of glomeruli in the olfactory bulbs of zebrafish (Danio) Tj ETQq0 0 0 rgBT $|_{0.9}^{0.9}$ erlock 10 Tf 50 70

39	Lung stem cells: New paradigms. Experimental Hematology, 2004, 32, 340-343.	0.2	48
40	Potential Therapeutic Initiatives for Fibrogenic Lung Diseases. Chest, 1995, 108, 848-855.	0.4	45
41	Stem Cells in Lung Injury and Repair. American Journal of Pathology, 2016, 186, 2544-2550.	1.9	45
42	Comparison of genetically encoded calcium indicators for monitoring action potentials in mammalian brain by two-photon excitation fluorescence microscopy. Neurophotonics, 2015, 2, 021014.	1.7	41
43	Airway Contractility in the Precision-Cut Lung Slice after Cryopreservation. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 876-881.	1.4	40
44	MMP-12 Deficiency Attenuates Angiotensin II-Induced Vascular Injury, M2 Macrophage Accumulation, and Skin and Heart Fibrosis. PLoS ONE, 2014, 9, e109763.	1.1	39
45	An NT4/TrkBâ€dependent increase in innervation links earlyâ€life allergen exposure to persistent airway hyperreactivity. FASEB Journal, 2014, 28, 897-907.	0.2	39
46	Airway epithelial Fas ligand expression: potential role in modulating bronchial inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L444-L449.	1.3	37
47	Launching invasive, firstâ€inâ€human trials against Parkinson's disease: Ethical considerations. Movement Disorders, 2009, 24, 1893-1901.	2.2	37
48	The Accumulation of Type I Collagen Mrnas in Human Embryonic Lung Fibroblasts Stimulated by Transforming Growth Factor-β. Connective Tissue Research, 1990, 24, 237-247.	1.1	36
48 49	The Accumulation of Type I Collagen Mrnas in Human Embryonic Lung Fibroblasts Stimulated by Transforming Growth Factor-Î ² . Connective Tissue Research, 1990, 24, 237-247. Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161.	1.1 1.3	36 34
	Transforming Growth Factor-Î ² . Connective Tissue Research, 1990, 24, 237-247. Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem		
49	Transforming Growth Factor-Î ² . Connective Tissue Research, 1990, 24, 237-247. Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161. Regulation of Type I Collagen Production by Insulin and Transforming Growth Factor-Î ² in Human Lung	1.3	34
49 50	 Transforming Growth Factor-Î². Connective Tissue Research, 1990, 24, 237-247. Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161. Regulation of Type I Collagen Production by Insulin and Transforming Growth Factor-Î² in Human Lung Fibroblasts. Connective Tissue Research, 1996, 34, 53-62. Bleomycin-induced lung fibrosis in IL-4-overexpressing and knockout mice. American Journal of 	1.3 1.1	34 30
49 50 51	 Transforming Growth Factor-Î². Connective Tissue Research, 1990, 24, 237-247. Expression regulation and function of heparan sulfate 6-O-endosulfatases in the spermatogonial stem cell niche. Glycobiology, 2011, 21, 152-161. Regulation of Type I Collagen Production by Insulin and Transforming Growth Factor-Î² in Human Lung Fibroblasts. Connective Tissue Research, 1996, 34, 53-62. Bleomycin-induced lung fibrosis in IL-4-overexpressing and knockout mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L1110-L1116. Maintenance and Repair of the Lung Endothelium Does Not Involve Contributions from Marrow-Derived Endothelial Precursor Cells. American Journal of Respiratory Cell and Molecular 	1.3 1.1 1.3	34 30 30

#	Article	IF	CITATIONS
55	Retinoic acid-induced inhibition of type I collagen gene expression by human lung fibroblasts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 335-341.	2.4	24
56	Mesenchymal Progenitor Cell Research: Limitations and Recommendations. Proceedings of the American Thoracic Society, 2008, 5, 707-710.	3.5	24
57	A New Approach for the Study of Lung Smooth Muscle Phenotypes and Its Application in a Murine Model of Allergic Airway Inflammation. PLoS ONE, 2013, 8, e74469.	1.1	23
58	Airway basal stem cells generate distinct subpopulations of PNECs. Cell Reports, 2021, 35, 109011.	2.9	22
59	Activation Dynamics and Signaling Properties of Notch3 Receptor in the Developing Pulmonary Artery. Journal of Biological Chemistry, 2011, 286, 22678-22687.	1.6	21
60	Gene expression profiling and localization of Hoechst-effluxing CD45â^' and CD45+ cells in the embryonic mouse lung. Physiological Genomics, 2005, 23, 172-181.	1.0	18
61	Discordant refulation of human type I collagen genes by prostaglandin E2. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 67-72.	1.9	17
62	Stem Cells in Airway Smooth Muscle: State of the Art. Proceedings of the American Thoracic Society, 2008, 5, 11-14.	3.5	17
63	A simple automated system for appetitive conditioning of zebrafish in their home tanks. Behavioural Brain Research, 2017, 317, 444-452.	1.2	17
64	Retinoic acid signaling is essential for airway smooth muscle homeostasis. JCI Insight, 2018, 3, .	2.3	16
65	Discordant regulation of transforming growth factor-β receptors by prostaglandin E2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 19-24.	2.4	14
66	Status of retraction notices for biomedical publications associated with research misconduct. Research Ethics, 2019, 15, 1-5.	0.8	13
67	Quantitative three-dimensional confocal microscopy of synaptic structures in living brain tissue. Microscopy Research and Technique, 1994, 29, 290-296.	1.2	12
68	Simultaneous in situ hybridization and TUNEL to identify cells undergoing apoptosis. The Histochemical Journal, 1997, 29, 413-418.	0.6	11
69	Marrow cells as progenitors of lung tissue. Blood Cells, Molecules, and Diseases, 2004, 32, 95-96.	0.6	10
70	Effect of insoluble extracellular matrix molecules on fas expression in epithelial cells. , 1998, 174, 285-292.		8
71	Breathing Life into the Lung Stem Cell Field. Cell Stem Cell, 2009, 4, 468-469.	5.2	7
72	Molecular characterization of the mouse Fas ligand promoter in airway epithelial cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1490, 291-301.	2.4	6

#	Article	IF	CITATIONS
73	Transcriptional landscape of pulmonary lymphatic endothelial cells during fetal gestation. PLoS ONE, 2019, 14, e0216795.	1.1	4
74	Fevers, Weight Loss, and Bilateral Peripheral Infiltrates in a Young Man. Chest, 1999, 115, 1181-1183.	0.4	2
75	Optical Quantal Analysis. Frontiers in Synaptic Neuroscience, 2019, 11, 8.	1.3	2
76	IL-1β regulates the mouse Fas ligand expression in corneal endothelial cells. Science Bulletin, 2007, 52, 2210-2215.	1.7	0
77	Data on horizontal and vertical movements of zebrafish during appetitive conditioning. Data in Brief, 2016, 9, 758-763.	0.5	0