Hao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084106/publications.pdf

Version: 2024-02-01

687363 940533 16 551 13 16 citations h-index g-index papers 16 16 16 312 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma, 2018, 325, 18-27.	5.1	79
2	Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 2019, 174, 24-35.	5. 0	70
3	Effects of biological soil crusts on soil detachment process by overland flow in the Loess Plateau of China. Earth Surface Processes and Landforms, 2016, 41, 875-883.	2.5	53
4	Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology, 2015, 248, 264-272.	2.6	49
5	Temporal variations in infiltration properties of biological crusts covered soils on the Loess Plateau of China. Catena, 2017, 159, 115-125.	5.0	43
6	Spatial variation in soil resistance to flowing water erosion along a regional transect in the Loess Plateau. Earth Surface Processes and Landforms, 2015, 40, 2049-2058.	2. 5	38
7	Effects of biological crust coverage on soil hydraulic properties for the <scp>Loess Plateau</scp> of <scp>China</scp> . Hydrological Processes, 2017, 31, 3396-3406.	2.6	37
8	Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma, 2021, 381, 114695.	5.1	34
9	Biocrust wetting induced change in soil surface roughness as influenced by biocrust type, coverage and wetting patterns. Geoderma, 2017, 306, 1-9.	5.1	33
10	Quantifying the surface covering, binding and bonding effects of biological soil crusts on soil detachment by overland flow. Earth Surface Processes and Landforms, 2017, 42, 2640-2648.	2.5	30
11	Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China. Earth Surface Processes and Landforms, 2019, 44, 796-807.	2.5	25
12	Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China. Catena, 2021, 201, 105235.	5.0	22
13	Soil erodibility affected by vegetation restoration on steep gully slopes on the Loess Plateau of China. Soil Research, 2018, 56, 712.	1.1	19
14	Variation in soil erosion resistance of slips deposition zone with progressive vegetation succession on the Loess Plateau, China. Journal of Soils and Sediments, 2020, 20, 234-248.	3.0	7
15	Plant community near-surface characteristics as drivers of soil erodibility variation along a slope gradient in a typical semiarid region of China. Catena, 2022, 212, 106108.	5.0	7
16	Biocrusts and subshrub development and soil water through a slope-gully system in a vegetation-restored site on the Loess Plateau of China. Catena, 2022, 216, 106344.	5.0	5