Wataru Nomura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2084040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening of flavor compounds using <i>Ucp1</i> -luciferase reporter beige adipocytes identified 5-methylquinoxaline as a novel UCP1-inducing compound. Bioscience, Biotechnology and Biochemistry, 2022, 86, 380-389.	1.3	2
2	Role of RhoGAP Rgd1 in Pkc1 signaling-related actin repolarization under heat shock stress in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129853.	2.4	3
3	Metabolome analysis revealed that soybean–Aspergillus oryzae interaction induced dynamic metabolic and daidzein prenylation changes. PLoS ONE, 2021, 16, e0254190.	2.5	7
4	Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochemistry and Biophysics Reports, 2021, 28, 101127.	1.3	1
5	Long non-coding RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under prolonged cold exposure in murine beige adipocytes. Bioscience, Biotechnology and Biochemistry, 2020, 84, 305-313.	1.3	9
6	<comparative a="" analysis="" canagliflozin,="" effects="" of="" preventive="" sodium-glucose<br="" the="">Co-Transporter-2 Inhibitor, on Body Weight Gain Between Oral Gavage and Dietary Administration by Focusing on Fatty Acid Metabolism. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 4353-4359.</comparative>	2.4	4
7	Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Scientific Reports, 2020, 10, 13887.	3.3	6
8	Antiâ€Inflammatory and Antioxidative Properties of Isoflavones Provide Renal Protective Effects Distinct from Those of Dietary Soy Proteins against Diabetic Nephropathy. Molecular Nutrition and Food Research, 2020, 64, e2000015.	3.3	21
9	Glycerol kinase stimulates uncoupling protein 1 expression by regulating fatty acid metabolism in beige adipocytes. Journal of Biological Chemistry, 2020, 295, 7033-7045.	3.4	15
10	A new mouse model for noninvasive fluorescenceâ€based monitoring of mitochondrial <scp>UCP</scp> 1 expression. FEBS Letters, 2019, 593, 1201-1212.	2.8	8
11	Soy hydrolysate enhances the isoproterenol-stimulated lipolytic pathway through an increase in β-adrenergic receptor expression in adipocytes. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1782-1789.	1.3	3
12	Endoplasmic Reticulum Stress Impaired Uncoupling Protein 1 Expression via the Suppression of Peroxisome Proliferator-Activated Receptor Î ³ Binding Activity in Mice Beige Adipocytes. International Journal of Molecular Sciences, 2019, 20, 274.	4.1	25
13	Contribution of phosphatidylserine to Rho1- and Pkc1-related repolarization of the actin cytoskeleton under stressed conditions in <i>Saccharomyces cerevisiae</i> . Small GTPases, 2019, 10, 449-455.	1.6	5
14	The Mevalonate Pathway Is Indispensable for Adipocyte Survival. IScience, 2018, 9, 175-191.	4.1	45
15	Toxicity of dihydroxyacetone is exerted through the formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity and nuclear division. Biochemical Journal, 2018, 475, 2637-2652.	3.7	6
16	β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte. International Journal of Molecular Sciences, 2018, 19, 2436.	4.1	10
17	Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cellular Signalling, 2017, 31, 146-153.	3.6	18
18	The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. Journal of Biological Chemistry, 2017, 292, 9175-9190.	3.4	48

WATARU NOMURA

#	Article	IF	CITATIONS
19	Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophageâ€mediated inflammation in adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700064.	3.3	36
20	Suksdorfin Promotes Adipocyte Differentiation and Improves Abnormalities in Glucose Metabolism via PPARÎ ³ Activation. Lipids, 2017, 52, 657-664.	1.7	11
21	Phosphatidylinositol 3,5-bisphosphate is involved in methylglyoxal-induced activation of the Mpk1 mitogen-activated protein kinase cascade in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2017, 292, 15039-15048.	3.4	8
22	4â€Hydroxyderricin, as a PPARγ Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3â€L1 Cells. Lipids, 2016, 51, 787-795.	1.7	22
23	Methylglyoxal Activates the Target of Rapamycin Complex 2-Protein Kinase C Signaling Pathway in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 2015, 35, 1269-1280.	2.3	40
24	10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis. Biochemical and Biophysical Research Communications, 2015, 459, 597-603.	2.1	59
25	Reduction of Glucose Uptake through Inhibition of Hexose Transporters and Enhancement of Their Endocytosis by Methylglyoxal in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2012, 287, 701-711.	3.4	30
26	Glyoxalase system in yeasts: Structure, function, and physiology. Seminars in Cell and Developmental Biology, 2011, 22, 278-284.	5.0	64
27	Methylglyoxal activates Gcn2 to phosphorylate elF2α independently of the TOR pathway in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 86, 1887-1894.	3.6	35
28	Role of Gcn4 for adaptation to methylglyoxal in Saccharomyces cerevisiae: Methylglyoxal attenuates protein synthesis through phosphorylation of eIF2α. Biochemical and Biophysical Research Communications, 2008, 376, 738-742.	2.1	13