John B. Goodenough

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2083897/john-b-goodenough-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

645 papers

85,063 citations

131 h-index 277 g-index

670 ext. papers

95,172 ext. citations

9.3 avg, IF

8.76 L-index

#	Paper	IF	Citations
645	Interfacial Chemistry Enables Stable Cycling of All-Solid-State Li Metal Batteries at High Current Densities. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6542-6550	16.4	52
644	Ionic Liquid (IL) Laden Metal-Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. <i>ACS Applied Materials & Discourse (IL-MOF)</i> 24662-24669	9.5	10
643	Li S -Integrated PEO-Based Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17701-17706	16.4	25
642	Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries. <i>ACS Applied Materials & Designed & Designed & Designed & Designed </i>	9.5	5
641	Li2S6-Integrated PEO-Based Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 17842-17847	3.6	8
640	Reaction Mechanism Optimization of Solid-State LiB Batteries with a PEO-Based Electrolyte. <i>Advanced Functional Materials</i> , 2021 , 31, 2001812	15.6	55
639	Ambient-Temperature All-Solid-State Sodium Batteries with a Laminated Composite Electrolyte. <i>Advanced Functional Materials</i> , 2021 , 31, 2002144	15.6	25
638	Charge Disproportionation and Complex Magnetism in a PbMnO3 Perovskite Synthesized under High Pressure. <i>Chemistry of Materials</i> , 2021 , 33, 92-101	9.6	0
637	Titanium Niobium Oxide: From Discovery to Application in Fast-Charging Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2021 , 33, 4-18	9.6	47
636	All-Solid-State Sodium Batteries with a Polyethylene Glycol DiacrylateNa3Zr2Si2PO12 Composite Electrolyte. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000061	1.6	6
635	Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries. <i>Energy Material Advances</i> , 2021 , 2021, 1-10	1	18
634	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. <i>Nature Communications</i> , 2021 , 12, 13	17.4	24
633	Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions. <i>Nano Letters</i> , 2021 , 21, 2281-2287	11.5	14
632	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001	3	63
631	Designing composite polymer electrolytes for all-solid-state lithium batteries. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100828	7.2	4
630	On high-temperature evolution of passivation layer in Li-10 wt % Mg alloy via in situ SEM-EBSD. <i>Science Advances</i> , 2020 , 6,	14.3	5
629	Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anodes for Li ion batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 2924-2937	35.4	31

(2020-2020)

6	28	Composition-Tunable Antiperovskite Cu In NNi as Superior Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17488-17493	16.4	15	
6	27	Dataset on a primary lithium battery cell with a ferroelectric Li-glass electrolyte and MnO cathode. <i>Data in Brief</i> , 2020 , 29, 105339	1.2	O	
6.	26	The sounds of science symphony for many instruments and voices. <i>Physica Scripta</i> , 2020 , 95, 062501	2.6	6	
6	25	General Strategy for Synthesis of Ordered Pt3M Intermetallics with Ultrasmall Particle Size. <i>Angewandte Chemie</i> , 2020 , 132, 7931-7937	3.6	15	
6.	24	Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance. <i>Applied Physics Reviews</i> , 2020 , 7, 011406	17.3	13	
6	23	Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a High-Energy-Density Cathode for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 190868	8 0 5.6	33	
6.	22	Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy. <i>Nano Letters</i> , 2020 , 20, 1607-1613	11.5	52	
6.	21	In Situ Formation of Li3P Layer Enables Fast Li+ Conduction across Li/Solid Polymer Electrolyte Interface. <i>Advanced Functional Materials</i> , 2020 , 30, 2000831	15.6	38	
6	2 0	KTa1MJTixGeyO3EA High ERelaxor Dielectric and Superior Oxide-Ion Electrolyte for IT-SOFC. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3205-3211	6.1	5	
6	19	(Invited) Directions of High Energy Batteries and Status of Battery500 Consortium. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 29-29	0		
6	18	Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries. Energy Material Advances, 2020 , 2020, 1-10	1	6	
6	17	Fast Li Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2497-2505	16.4	91	
6	16	Micropores-in-macroporous gel polymer electrolytes for alkali metal batteries. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 177-189	5.8	9	
6	15	Dataset on a ferroelectric based electrostatic and electrochemical Li-cell with a traditional cathode. <i>Data in Brief</i> , 2020 , 29, 105087	1.2	2	
6	14	Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte. <i>Angewandte Chemie</i> , 2020 , 132, 4160-4166	3.6	18	
6	13	Correlative imaging of ionic transport and electronic structure in nano LiFePO electrodes. <i>Chemical Communications</i> , 2020 , 56, 984-987	5.8	4	
6	12	Enhanced Surface Interactions Enable Fast Li Conduction in Oxide/Polymer Composite Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4131-4137	16.4	114	
6	11	Graphitic-Shell Encapsulation of Metal Electrocatalysts for Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution in Alkaline Solution. <i>Advanced Energy Materials</i> , 2020 , 10, 1903215	21.8	86	

610	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. <i>Science</i> , 2020 , 370, 192-197	33.3	156
609	Structural and Electrochemical Consequences of Sodium in the Transition-Metal Layer of O?3-Na3Ni1.5TeO6. <i>Chemistry of Materials</i> , 2020 , 32, 10035-10044	9.6	7
608	Thermodynamic Understanding of Li-Dendrite Formation. <i>Joule</i> , 2020 , 4, 1864-1879	27.8	90
60 7	Composition-Tunable Antiperovskite CuxIn1NNi3 as Superior Electrocatalysts for the Hydrogen Evolution Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 17641-17646	3.6	3
606	NASICON Li1.2Mg0.1Zr1.9(PO4)3 Solid Electrolyte for an All-Solid-State Li-Metal Battery. <i>Small Methods</i> , 2020 , 4, 2000764	12.8	15
605	A Ternary Hybrid-Cation Room-Temperature Liquid Metal Battery and Interfacial Selection Mechanism Study. <i>Advanced Materials</i> , 2020 , 32, e2000316	24	26
604	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite-Free Alkali-Metal-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 12268-12275	3.6	8
603	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendrite-Free Alkali-Metal-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12170-12177	16.4	23
602	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO2-Supported Gel Polymer Electrolyte. <i>ACS Energy Letters</i> , 2020 , 5, 1681-1688	20.1	38
601	General Strategy for Synthesis of Ordered Pt M Intermetallics with Ultrasmall Particle Size. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7857-7863	16.4	51
600	Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e1902420	11	39
599	Thermodynamic considerations of same-metal electrodes in an asymmetric cell. <i>Materials Theory</i> , 2019 , 3,	2.2	3
598	High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 1881	15-1882	21 ¹¹⁷
597	Antiperovskite Nitrides CuNCoV: Highly Efficient and Durable Electrocatalysts for the Oxygen-Evolution Reaction. <i>Nano Letters</i> , 2019 , 19, 7457-7463	11.5	37
596	A Liquid-Metal-Enabled Versatile Organic Alkali-Ion Battery. Advanced Materials, 2019, 31, e1806956	24	70
595	Electrochemical Performance of Large-Grained NaCrO2 Cathode Materials for Na-Ion Batteries Synthesized by Decomposition of Na2Cr2O7[2H2O. <i>Chemistry of Materials</i> , 2019 , 31, 5214-5223	9.6	21
594	Low-Cost Self-Assembled Oxide Separator for Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1903550	15.6	13
593	A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene oxide)Na3Zr2Si2PO12 Composite Electrolyte 2019 , 1, 132-138		46

592	Superior Oxygen Electrocatalysis on Nickel Indium Thiospinels for Rechargeable ZnAir Batteries 2019 , 1, 123-131		135	
591	Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4943-4953	6.1	4	
590	Fiber-in-Tube Design of Co9S8-Carbon/Co9S8: Enabling Efficient Sodium Storage. <i>Angewandte Chemie</i> , 2019 , 131, 6305-6309	3.6	6	
589	Fiber-in-Tube Design of Co S -Carbon/Co S : Enabling Efficient Sodium Storage. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6239-6243	16.4	85	
588	Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. <i>Nature Communications</i> , 2019 , 10, 900	17.4	203	
587	Pathways for practical high-energy long-cycling lithium metal batteries. <i>Nature Energy</i> , 2019 , 4, 180-18	6 62.3	1202	
586	Pressure-induced phase transitions and superconductivity in a quasi-1-dimensional topological crystalline insulator BiBr. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17696-17700	11.5	18	
585	Exceptional oxygen evolution reactivities on CaCoO and SrCoO. <i>Science Advances</i> , 2019 , 5, eaav6262	14.3	89	
584	A New Type of Electrolyte System To Suppress Polysulfide Dissolution for Lithium-Sulfur Battery. <i>ACS Nano</i> , 2019 , 13, 9067-9073	16.7	45	
583	Room-temperature liquid metal and alloy systems for energy storage applications. <i>Energy and Environmental Science</i> , 2019 , 12, 2605-2619	35.4	69	
582	Effect of Chemical Treatment on the Surface Structure of Li1⊠[Mn2]O4. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2078-2079	0.5		
581	A perspective on the Li-ion battery. <i>Science China Chemistry</i> , 2019 , 62, 1555-1556	7.9	31	
580	Electrochemical Properties of Three Li2Ni2TeO6 Structural Polymorphs. <i>Chemistry of Materials</i> , 2019 , 31, 9379-9388	9.6	15	
579	Short O-O separation in layered oxide NaCoO enables an ultrafast oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23473-2347	9 ^{11.5}	35	
57 ⁸	Polar polymerBolvent interaction derived favorable interphase for stable lithium metal batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 3319-3327	35.4	85	
577	Personal journey into solid state chemistry. <i>Journal of Solid State Chemistry</i> , 2019 , 271, 387-392	3.3	4	
57 ⁶	Oxidizing Vacancies in Nitrogen-Doped Carbon Enhance Air-Cathode Activity. <i>Advanced Materials</i> , 2019 , 31, e1803339	24	39	
575	Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries. Advanced Materials, 2019 , 31, e1805574	24	196	

574	Structurally Ordered Fe3Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. <i>Advanced Energy Materials</i> , 2019 , 9, 1803040	21.8	68
573	Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6343-6352	16.4	38
572	Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6448-6455	16.4	295
571	A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. <i>Angewandte Chemie</i> , 2018 , 130, 5547-5551	3.6	35
570	Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte. <i>CheM</i> , 2018 , 4, 833-844	16.2	144
569	Titelbild: A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte (Angew. Chem. 8/2018). <i>Angewandte Chemie</i> , 2018 , 130, 2025-2025	3.6	1
568	Oxygen-Electrode Catalysis on Oxoperovskites at 700 °C versus 20 °C. <i>Chemistry of Materials</i> , 2018 , 30, 629-635	9.6	8
567	Cathode Dependence of Liquid-Alloy Na-K Anodes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3292-3298	16.4	73
566	PEO/garnet composite electrolytes for solid-state lithium batteries: From Beramic-in-polymerIto polymer-in-ceramic Nano Energy, 2018 , 46, 176-184	17.1	672
565	Batteries for electric road vehicles. <i>Dalton Transactions</i> , 2018 , 47, 645-648	4.3	25
565 564	Batteries for electric road vehicles. <i>Dalton Transactions</i> , 2018 , 47, 645-648 New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220	16.4	25
	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma		22
564	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer	16.4	22
564	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2096-2100 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer	16.4	325
564563562	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2096-2100 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 2118-2122 A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode.	16.4 16.4 3.6	22 325 24
564563562561	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2096-2100 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 2118-2122 A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5449-5453 Spin freezing into a disordered state in CaFeTi2O6 synthesized under high pressure. <i>Physical</i>	16.4 16.4 3.6	22 325 24 150
564563562561560	New Mechanism for Ferroelectricity in the Perovskite CaMnTiO Synthesized by Spark Plasma Sintering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2214-2220 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2096-2100 A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 2118-2122 A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5449-5453 Spin freezing into a disordered state in CaFeTi2O6 synthesized under high pressure. <i>Physical Review B</i> , 2018 , 98,	16.4 16.4 3.6 16.4	22 325 24 150

556	Superior Oxygen Electrocatalysis on RuSex Nanoparticles for Rechargeable Air Cathodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1702037	21.8	12
555	Robust N-doped carbon aerogels strongly coupled with iron-cobalt particles as efficient bifunctional catalysts for rechargeable Zn-air batteries. <i>Nanoscale</i> , 2018 , 10, 19937-19944	7.7	108
554	Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectrics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17968-17976	16.4	12
553	NaMnZr(PO): A High-Voltage Cathode for Sodium Batteries. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18192-18199	16.4	115
552	A Self-Healing Room-Temperature Liquid-Metal Anode for Alkali-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804649	15.6	89
551	LiN-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C. <i>Nano Letters</i> , 2018 , 18, 7414-7418	11.5	160
550	Selective CO Evolution from Photoreduction of CO on a Metal-Carbide-Based Composite Catalyst. Journal of the American Chemical Society, 2018 , 140, 13071-13077	16.4	46
549	Room-Temperature Liquid Na-K Anode Membranes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14184-14187	16.4	52
548	Exploring Indium-Based Ternary Thiospinel as Conceivable High-Potential Air-Cathode for Rechargeable ZnAir Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1802263	21.8	164
547	Pressure-induced phase transitions and superconductivity in a black phosphorus single crystal. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9935-9940	11.5	23
546	Room-Temperature Liquid Nak Anode Membranes. <i>Angewandte Chemie</i> , 2018 , 130, 14380-14383	3.6	10
545	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. <i>Nano Energy</i> , 2018 , 53, 926-931	17.1	69
544	Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1925-1929	13	17
543	Low-Cost High-Energy Potassium Cathode. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2164-27	167.4	366
542	Photocatalytic CO Reduction by Carbon-Coated Indium-Oxide Nanobelts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4123-4129	16.4	291
541	Conducting Nanopaper: A Carbon-Free Cathode Platform for LiD2 Batteries. <i>ACS Energy Letters</i> , 2017 , 2, 673-680	20.1	27
540	A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5541-5545	16.4	117
539	A Plastic¶rystal Electrolyte Interphase for All-Solid-State Sodium Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 5633-5637	3.6	25

538	An Inverse Aluminum Battery: Putting the Aluminum as the Cathode. ACS Energy Letters, 2017, 2, 1534-	153.8	12
537	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. <i>Nano Energy</i> , 2017 , 39, 77-85	17.1	172
536	High-Pressure Synthesis, Crystal Structure, and Magnetic and Transport Properties of a Six-Layered SrRhO. <i>Inorganic Chemistry</i> , 2017 , 56, 8187-8194	5.1	3
535	Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7345-7354	13	45
534	2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery. <i>Electrochimica Acta</i> , 2017 , 237, 69-77	6.7	45
533	Electric Dipoles and Ionic Conductivity in a Na+Glass Electrolyte. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A207-A213	3.9	22
532	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 771-774	3.6	66
531	Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 753-756	16.4	341
530	Alternative strategy for a safe rechargeable battery. Energy and Environmental Science, 2017, 10, 331-3	36 5.4	181
529	Rechargeable Sodium All-Solid-State Battery. ACS Central Science, 2017, 3, 52-57	16.8	240
528	Changing Outlook for Rechargeable Batteries. ACS Catalysis, 2017, 7, 1132-1135	13.1	21
527	Robust Fe Mo C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal-Air Battery. <i>Advanced Materials</i> , 2017 , 29, 1702385	24	79
526	Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N. <i>Advanced Energy Materials</i> , 2017 , 7, 1700732	21.8	131
525	Ni3FeN-Supported Fe3Pt Intermetallic Nanoalloy as a High-Performance Bifunctional Catalyst for MetalAir Batteries. <i>Angewandte Chemie</i> , 2017 , 129, 10033-10037	3.6	21
524	Ni FeN-Supported Fe Pt Intermetallic Nanoalloy as a High-Performance Bifunctional Catalyst for Metal-Air Batteries. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9901-9905	16.4	133
523	Ni3Fe-N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1601172	21.8	305
522	A high-performance all-metallocene-based, non-aqueous redox flow battery. <i>Energy and Environmental Science</i> , 2017 , 10, 491-497	35.4	155
521	Long stable cycling of fluorine-doped nickel-rich layered cathodes for lithium batteries. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1292-1298	5.8	15

520	Cellulose-Based Porous Membrane for Suppressing Li Dendrite Formation in Lithium B ulfur Battery. <i>ACS Energy Letters</i> , 2016 , 1, 633-637	20.1	136
519	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2016 , 128, 10119-10122	3.6	22
518	Liquid K-Na Alloy Anode Enables Dendrite-Free Potassium Batteries. <i>Advanced Materials</i> , 2016 , 28, 960	8 -9 612	! 179
517	An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3MnTi(PO4)3. <i>Angewandte Chemie</i> , 2016 , 128, 12960-12964	3.6	53
516	An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3 MnTi(PO4)3. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12768-72	16.4	176
515	High-pressure synthesis and characterization of the effective pseudospin S=1/2 XY pyrochlores R2Pt2O7(R=Er,Yb). <i>Physical Review B</i> , 2016 , 93,	3.3	17
514	Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9385-8	16.4	662
513	Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9965-8	16.4	155
512	Exploring reversible oxidation of oxygen in a manganese oxide. <i>Energy and Environmental Science</i> , 2016 , 9, 2575-2577	35.4	115
511	Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2016 , 28, 8051-8059	9.6	272
510	Hollow Nanotubes of N-Doped Carbon on CoS. Angewandte Chemie, 2016, 128, 16063-16066	3.6	12
509	Hollow Nanotubes of N-Doped Carbon on CoS. Angewandte Chemie - International Edition, 2016, 55, 15	8 31 6-45	834 6
508	NaMV(PO) (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. <i>Nano Letters</i> , 2016 , 16, 783	6 <u>17</u> 18 4 1	146
507	Anomalous bulk modulus in vanadate spinels. <i>Physical Review B</i> , 2016 , 94,	3.3	7
506	Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17726-17731	13	15
505	Mastering the interface for advanced all-solid-state lithium rechargeable batteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13313-13317	11.5	193
504	Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. <i>Journal of the American Chemical Society</i> , 2016 , 138, 14915-14922	16.4	267
503	Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling. <i>Physical Review Letters</i> , 2016 , 117, 176603	7.4	23

502	Possible Bose-Einstein condensate associated with an orbital degree of freedom in the Mott insulator CaCrO3. <i>Physical Review B</i> , 2016 , 94,	3.3	3
501	Long-range magnetic order in the Heisenberg pyrochlore antiferromagnets Gd2Ge2O7 and Gd2Pt2O7 synthesized under high pressure. <i>Physical Review B</i> , 2016 , 94,	3.3	14
500	Cross-Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502130	21.8	74
499	Investigation of Reversible Li Insertion into LiY(WO4)2. Chemistry of Materials, 2016, 28, 4641-4645	9.6	7
498	Li-Ion Conduction and Stability of Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2016 , 8, 14552-7	9.5	69
497	Justifying the significance of Knudsen diffusion in solid oxide fuel cells. <i>Energy</i> , 2016 , 95, 242-246	7.9	12
496	Conduction below 100 °C in nominal Li6ZnNb4O14. <i>Journal of Materials Science</i> , 2016 , 51, 854-860	4.3	3
495	Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. <i>Electrochemistry Communications</i> , 2016 , 65, 9-13	5.1	47
494	The origin of grain boundary capacitance in highly doped ceria. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 5901-4	3.6	1
493	Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. <i>Energy and Environmental Science</i> , 2016 , 9, 948-954	35.4	79
492	Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2016 , 28, 6926-31	24	459
491	Low-Cost Higher Loading of a Sulfur Cathode. Advanced Energy Materials, 2016, 6, 1502059	21.8	83
490	A Sodium-Ion Battery with a Low-Cost Cross-Linked Gel-Polymer Electrolyte. <i>Advanced Energy Materials</i> , 2016 , 6, 1600467	21.8	101
489	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. <i>Nano Letters</i> , 2016 , 16, 4560-8	11.5	117
488	Subzero-Temperature Cathode for a Sodium-Ion Battery. <i>Advanced Materials</i> , 2016 , 28, 7243-8	24	299
487	Insulating Pockets in Metallic LaNiO3. Advanced Electronic Materials, 2016, 2, 1500261	6.4	17
486	Li3N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502534	21.8	109
485	Lattice and magnetic dynamics in perovskite Y1\(\mathbb{L}\)LaxTiO3. <i>Physical Review B</i> , 2016 , 94,	3.3	4

(2015-2016)

484	Localized Mg-vacancy states in the thermoelectric material Mg2Bi0.4Sn0.6. <i>Journal of Applied Physics</i> , 2016 , 119, 085104	2.5	7
483	Revealing the Reconstructed Surface of Li[Mn2]O4. <i>Nano Letters</i> , 2016 , 16, 2899-906	11.5	52
482	Catalytic activities for methanol oxidation on ultrathin CuPt wavy nanowires with/without smart polymer. <i>Chemical Science</i> , 2016 , 7, 5414-5420	9.4	65
481	Low-Cost Hollow Mesoporous Polymer Spheres and All-Solid-State Lithium, Sodium Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1501802	21.8	110
480	Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. <i>Chemistry of Materials</i> , 2016 , 28, 6553-6559	9.6	88
479	NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery. <i>Energy and Environmental Science</i> , 2016 , 9, 3103-3106	35.4	58
478	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. <i>Nano Letters</i> , 2016 , 16, 6516-6522	11.5	192
477	Varied roles of Pb in transition-metal PbO perovskites (= Ti, V, Cr, Mn, Fe, Ni, Ru). <i>Science and Technology of Advanced Materials</i> , 2015 , 16, 036003	7.1	23
476	Trapping lithium polysulfides of a LiB battery by forming lithium bonds in a polymer matrix. <i>Energy and Environmental Science</i> , 2015 , 8, 2389-2395	35.4	170
475	Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. <i>Journal of Alloys and Compounds</i> , 2015 , 641, 30-36	5.7	41
474	A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application. <i>Chemical Communications</i> , 2015 , 51, 9817-20	5.8	18
473	A Composite Gel B olymer/Glass B iber Electrolyte for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2015 , 5, 1402235	21.8	114
472	Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation. <i>Chemistry of Materials</i> , 2015 , 27, 3763-3768	9.6	68
47 ¹	Electrode/Electrolyte Interface of Composite £i3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive. <i>Chemistry of Materials</i> , 2015 , 27, 3332-33	40 6	63
470	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. <i>Nano Letters</i> , 2015 , 15, 3398-402	11.5	104
469	ReviewBolid Electrolytes in Rechargeable Electrochemical Cells. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2387-A2392	3.9	170
468	Energy storage materials: A perspective. <i>Energy Storage Materials</i> , 2015 , 1, 158-161	19.4	343
467	Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr2IrO4. <i>Journal of Applied Physics</i> , 2015 , 117, 17A310	2.5	8

466	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. <i>Chemical Society Reviews</i> , 2015 , 44, 7968-96	58.5	322
465	Electronic and Electrochemical Properties of Li1Mmn1.5Ni0.5O4 Spinel Cathodes As a Function of Lithium Content and Cation Ordering. <i>Chemistry of Materials</i> , 2015 , 27, 6934-6945	9.6	48
464	Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10500-10508	7.1	36
463	Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 3000-3005	35.4	140
462	Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery. <i>Chemistry of Materials</i> , 2015 , 27, 6682-6688	9.6	47
461	Electrically tunable transport in the antiferromagnetic Mott insulator Sr2IrO4. <i>Physical Review B</i> , 2015 , 92,	3.3	12
460	Electron scattering, charge order, and pseudogap physics in La1.6Nd0.4SrxCuO4: An angle-resolved photoemission spectroscopy study. <i>Physical Review B</i> , 2015 , 92,	3.3	43
459	Identification of electronic state in perovskite CaCrO3 by high-pressure studies. <i>Physical Review B</i> , 2015 , 92,	3.3	5
458	Synthesis of monoclinic IrTe2 under high pressure and its physical properties. <i>Physical Review B</i> , 2015 , 92,	3.3	5
457	Magnetic domain tuning and the emergence of bubble domains in the bilayer manganite La2🛘xSr1+2xMn2O7(x=0.32). <i>Physical Review B</i> , 2015 , 92,	3.3	8
456	Gas convection in fuel cells: An overlooked factor. <i>Electrochimica Acta</i> , 2015 , 176, 1476-1483	6.7	1
455	High-rate oxygen evolution reaction on Al-doped LiNiO2. <i>Advanced Materials</i> , 2015 , 27, 6063-7	24	59
454	Active LaNi1NFexO3 bifunctional catalysts for air cathodes in alkaline media. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9421-9426	13	98
453	Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7278-81	16.4	128
452	Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution. <i>Journal of Applied Physics</i> , 2015 , 117, 155103	2.5	42
45 ¹	Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. Journal of the American Chemical Society, 2015 , 137, 2658-64	16.4	458
450	Local structural distortions, orbital ordering, and ferromagnetism in underdoped La1\subsetensionSrxMnO3. <i>Physical Review B</i> , 2015 , 91,	3.3	7
449	Charge disproportionation and the pressure-induced insulator-metal transition in cubic perovskite PbCrO3. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 167	70 ¹ 4·5	31

(2014-2015)

448	Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2548-54	16.4	415
447	Conditions for Ta(IV)-Ta(IV) bonding in trirutile Li(x)MTa2O6. <i>Inorganic Chemistry</i> , 2015 , 54, 2009-16	5.1	2
446	Wide electrochemical window ionic salt for use in electropositive metal electrodeposition and solid state Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2194-2201	13	19
445	Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides. <i>Advanced Energy Materials</i> , 2014 , 4, 1400452	21.8	62
444	An electrochemical device with a multifunctional sensor for gas diffusivity measurement in fuel cells. <i>Journal of Power Sources</i> , 2014 , 251, 108-112	8.9	9
443	Spinel materials for high-voltage cathodes in Li-ion batteries. <i>RSC Advances</i> , 2014 , 4, 154-167	3.7	156
442	Electrochemical energy storage in a sustainable modern society. <i>Energy and Environmental Science</i> , 2014 , 7, 14-18	35.4	601
441	Estimating Hybridization of Transition Metal and Oxygen States in Perovskites from O K-edge X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1856-1863	3.8	244
440	Sr3BxNa3xSi3O9II.5x (x = 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1680-1684	35.4	61
439	Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithiumBulfur batteries. Journal of Materials Chemistry A, 2014 , 2, 10126-10130	13	87
438	Theoretical and Experimental Study of Vanadium-Based Fluorophosphate Cathodes for Rechargeable Batteries. <i>Chemistry of Materials</i> , 2014 , 26, 3089-3097	9.6	69
437	Dynamic Distortions in the YTiO3 Ferromagnet. Journal of the Physical Society of Japan, 2014, 83, 08460	11.5	6
436	A solution-phase bifunctional catalyst for lithium-oxygen batteries. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8941-6	16.4	356
435	Magnetic phase transformation induced by electrochemical lithium intercalation in Li1 + \times EuTiO4 and Li2 + $2\times$ Eu2Ti3O10 (0 \times \times) compounds. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 2047-2060	2.6	7
434	Neutron Diffraction and Electrochemical Studies of Na0.79CoO2and Na0.79CoO.7Mn0.3O2Cathodes for Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A961-A967	3.9	16
433	Mass enhancement versus Stoner enhancement in strongly correlated metallic perovskites: LaNiO3 and LaCuO3. <i>Physical Review B</i> , 2014 , 89,	3.3	36
432	A reversible Br2/BrItedox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 1990-1995	35.4	119
431	Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11036-40	16.4	118

430	Structural investigation of the oxide-ion electrolyte with SrMO3 (M = Si/Ge) structure. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4355-4360	13	27
429	Low-Cost, Dendrite-Blocking Polymer-Sb2O3Separators for Lithium and Sodium Batteries. <i>Journal of the Electrochemical Society</i> , 2014 , 161, A1655-A1661	3.9	42
428	New routes to synthesizing an ordered perovskite CaCu3Fe2Sb2O12 and its magnetic structure by neutron powder diffraction. <i>Inorganic Chemistry</i> , 2014 , 53, 4281-3	5.1	16
427	New battery strategies with a polymer/Al2O3 separator. <i>Journal of Power Sources</i> , 2014 , 263, 52-58	8.9	60
426	A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. <i>Energy and Environmental Science</i> , 2014 , 7, 2220-2226	35.4	257
425	Carbon-Coated Li3Nd3W2O12: A High Power and Low-Voltage Insertion Anode with Exceptional Cycleability for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301715	21.8	30
424	Reinvestigation of the electrochemical lithium intercalation in 2H- and 3R-NbS2. <i>Journal of Power Sources</i> , 2014 , 245, 27-32	8.9	35
423	A perspective on electrical energy storage. MRS Communications, 2014, 4, 135-142	2.7	80
422	Y1NLaxVO3: Effects of doping on orbital ordering. <i>Physical Review B</i> , 2014 , 90,	3.3	6
421	Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites. <i>Nature Communications</i> , 2014 , 5, 5818	17.4	12
420	Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. <i>Angewandte Chemie</i> , 2014 , 126, 11216-11220	3.6	29
419	Perspective on Engineering Transition-Metal Oxides. <i>Chemistry of Materials</i> , 2014 , 26, 820-829	9.6	69
418	Na2Ni2TeO6: Evaluation as a cathode for sodium battery. <i>Journal of Power Sources</i> , 2013 , 243, 817-821	8.9	73
417	Sodium Intercalation Behavior of Layered NaxNbS2 (0 ি 🖟 🖺). Chemistry of Materials, 2013 , 25, 1699-1705	9.6	50
416	Pressure dependence of the superconducting transition temperature of the filled skutterudite YFe4P12. <i>Physical Review B</i> , 2013 , 88,	3.3	5
415	Monoclinic Sr(1-x)Na(x)SiO(3-0.5x): new superior oxide ion electrolytes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10149-54	16.4	61
414	Magnetic measurements as a viable tool to assess the relative degrees of cation ordering and Mn3+content in doped LiMn1.5Ni0.5O4 spinel cathodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10745	13	17
413	Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. <i>Nano Letters</i> , 2013 , 13, 4340-5	11.5	131

(2013-2013)

412	Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18885-18890	3.8	150
411	Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 13032-7	3.6	103
410	Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. <i>ACS Applied Materials & ACS Applied & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	155
409	Li6Zr2O7 interstitial lithium-ion solid electrolyte. <i>Electrochimica Acta</i> , 2013 , 102, 446-450	6.7	19
408	An electrochemical device for three-dimensional (3D) diffusivity measurement in fuel cells. <i>Nano Energy</i> , 2013 , 2, 1004-1009	17.1	16
407	Mechanism of the CaIrO3 post-perovskite phase transition under pressure. <i>Physical Review B</i> , 2013 , 88,	3.3	11
406	Atomic Layer Deposition Functionalized Composite SOFC Cathode La0.6Sr0.4Fe0.8Co0.2O3Gd0.2Ce0.8O1.9: Enhanced Long-Term Stability. <i>Chemistry of Materials</i> , 2013 , 25, 4224-4231	9.6	59
405	Anomalous perovskite PbRuO3 stabilized under high pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 20003-7	11.5	8
404	Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16280-3	16.4	367
403	High-pressure synthesis of the BaIrO3 perovskite: A Pauli paramagnetic metal with a Fermi liquid ground state. <i>Physical Review B</i> , 2013 , 88,	3.3	18
402	Effect of an Internal Electric Field on the Redox Energies of ALnTiO4 (A = Na or Li, Ln = Y or Rare-Earth). <i>Chemistry of Materials</i> , 2013 , 25, 3852-3857	9.6	19
401	Temperature Dependence of Aliovalent-Vanadium Doping in LiFePO4 Cathodes. <i>Chemistry of Materials</i> , 2013 , 25, 768-781	9.6	75
400	Zhang-Rice physics and anomalous copper states in A-site ordered perovskites. <i>Scientific Reports</i> , 2013 , 3, 1834	4.9	35
399	In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge. <i>Nanotechnology</i> , 2013 , 24, 424009	3.4	50
398	Exploration of NaVOPO4 as a cathode for a Na-ion battery. Chemical Communications, 2013, 49, 5280-2	5.8	70
397	Thermoelectric solid-oxide fuel cell with Ca2Co2O5 as cathode material. RSC Advances, 2013, 3, 2336	3.7	8
396	Eliminative induction: A basis for arguing system confidence 2013,		11
395	Measuring assurance case confidence using Baconian probabilities 2013,		13

394	The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013, 135, 116	71864	5747
393	Unusual structural evolution in KCuF3 at high temperatures by neutron powder diffraction. <i>Physical Review B</i> , 2013 , 87,	3.3	10
392	Evolution of strategies for modern rechargeable batteries. Accounts of Chemical Research, 2013, 46, 105	53:463	556
391	Study of atomic structure and electronic structure of an AA'3B4O12 double-perovskite CaCu3Ir4O12 using STEM imaging and EELS techniques. <i>Ultramicroscopy</i> , 2013 , 127, 94-9	3.1	10
390	Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4. <i>Journal of Power Sources</i> , 2013 , 243, 260-266	8.9	26
389	Comparison of Li+ conductivity in Li3Nb1NxO4 (M=W, Mo) with that in Li32xNixNbO4. <i>Materials Research Bulletin</i> , 2013 , 48, 1372-1375	5.1	1
388	A superior low-cost cathode for a Na-ion battery. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1964-7	16.4	586
387	High-pressure synthesis, structure, and photoluminescence of a new KSbO3-type bismuth germanate Bi3Ge3O10.5. <i>Inorganic Chemistry</i> , 2013 , 52, 2138-41	5.1	4
386	Advanced Electrodes for High Power Li-ion Batteries. <i>Materials</i> , 2013 , 6, 1028-1049	3.5	97
385	Observation of electronic inhomogeneity and charge density waves in a bilayer La(2-2x)Sr(1+2x)Mn2O7 single crystal. <i>Physical Review Letters</i> , 2013 , 110, 217203	7.4	4
384	In Situ Raman Study of Phase Stability of £i3V2(PO4)3 upon Thermal and Laser Heating. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11994-12002	3.8	29
383	Critical behavior of the ferromagnetic perovskites RTiO3 (R = Dy, Ho, Er, Tm, Yb) by magnetocaloric measurements. <i>Physical Review B</i> , 2013 , 87,	3.3	51
382	Aluminum-stabilized NASICON-structured Li3V2(PO4)3. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 68-72	13	30
381	Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides. <i>Journal of Applied Physics</i> , 2013 , 114, 173705	2.5	37
380	Determination of hole distribution in Sr14\(\text{NC}\) CaxCu24O41 using soft x-ray absorption spectroscopy at the Cu L3 edge. <i>Physical Review B</i> , 2013 , 88,	3.3	13
379	Lattice effects on ferromagnetism in perovskite ruthenates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13312-5	11.5	17
378	Possible Kondo physics near a metal-insulator crossover in the a-site ordered perovskite CaCu3Ir4O12. <i>Physical Review Letters</i> , 2013 , 111, 176403	7.4	21
377	Improving Li2O2 conductivity via polaron preemption: An ab initio study of Si doping. <i>Applied Physics Letters</i> , 2013 , 103, 073901	3.4	26

376	A Superior Low-Cost Cathode for a Na-Ion Battery. Angewandte Chemie, 2013, 125, 2018-2021	3.6	66
375	Reversible lithium insertion in the garnet framework of Li3Nd3W2O12. <i>Electrochemistry Communications</i> , 2012 , 19, 135-137	5.1	15
374	Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure. <i>Materials Research Bulletin</i> , 2012 , 47, 1229-1232	5.1	70
373	Use of B2O3 to improve Li+-ion transport in LiTi2(PO4)3-based ceramics. <i>Journal of Power Sources</i> , 2012 , 197, 310-313	8.9	23
372	Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. <i>Journal of Power Sources</i> , 2012 , 199, 214-219	8.9	108
371	Sr0.7Ho0.3CoO3las a potential cathode material for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2012 , 199, 161-164	8.9	30
370	Electrochemical performance of Ba2Co9O14+SDC composite cathode for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2012 , 209, 40-43	8.9	17
369	Optimum lithium-ion conductivity in cubic Li7\(\mathbb{L}\)a3Hf2\(\mathbb{L}\)TaxO12. <i>Journal of Power Sources</i> , 2012 , 209, 184-188	8.9	60
368	Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. <i>Journal of Power Sources</i> , 2012 , 209, 278-281	8.9	120
367	Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal. <i>Physical Review B</i> , 2012 , 86,	3.3	57
366	Statics and dynamics of the highly correlated spin ice Ho2Ge2O7. Physical Review B, 2012, 86,	3.3	29
365	Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24563		42
364	Electrochemical Behavior of a Graphite Electrode Prepared by Anodic Electrophoretic Deposition. Journal of the Electrochemical Society, 2012 , 159, A321-A324	3.9	8
363	Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO4. <i>Chemistry of Materials</i> , 2012 , 24, 3212-3218	9.6	56
362	LiFeO2-Incorporated Li2MoO3 as a Cathode Additive for Lithium-Ion Battery Safety. <i>Chemistry of Materials</i> , 2012 , 24, 2673-2683	9.6	66
361	Two-phase interface in LiMnPO4 nanoplates. <i>Journal of Power Sources</i> , 2012 , 215, 116-121	8.9	38
360	Electrochemical probings of Li1+xVS2. <i>Electrochimica Acta</i> , 2012 , 78, 430-433	6.7	6
359	Sr1kxSi1kGeyO3b.5x: a new family of superior oxide-ion conductors. <i>Energy and Environmental Science</i> , 2012 , 5, 9626	35.4	56

358	Synthesis and Characterization of Sr2Cu(W1⊠Mox)O6: A Quasi-Two-Dimensional Magnetic System. <i>Chemistry of Materials</i> , 2012 , 24, 2764-2774	9.6	25
357	Characterization of the Double Perovskite Ba2BixSc0.2Co1.8 \square O6 \square x = 0.1, 0.2). Chemistry of Materials, 2012 , 24, 4114-4122	9.6	26
356	Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12. <i>Chemical Communications</i> , 2012 , 48, 9840-2	5.8	79
355	Optimizing Li+ conductivity in a garnet framework. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15357		409
354	Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 225-231		83
353	Critical behavior of ferromagnetic perovskite ruthenates. <i>Physical Review B</i> , 2012 , 85,	3.3	23
352	The Prepared and Electrochemical Property of Mg Doped LiMnPO4Nanoplates as Cathode Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A995-A998	3.9	20
351	Role of Oxygen Vacancies on the Performance of Li[Ni0.5 $\mbox{$\mathbb{N}$}$ Mn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 3101-3109	9.6	232
350	Reflections on Sixty Years of Solid State Chemistry. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 1893-1896	1.3	O
349	Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat. <i>Chemistry of Materials</i> , 2012 , 24, 1401-1403	9.6	20
348	Prussian blue: a new framework of electrode materials for sodium batteries. <i>Chemical Communications</i> , 2012 , 48, 6544-6	5.8	758
347	Perovskite Sr0.95Ce0.05CoO3 I loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18902		127
346	Rechargeable batteries: challenges old and new. Journal of Solid State Electrochemistry, 2012, 16, 2019-	2089	262
345	Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. <i>Applied Physics Letters</i> , 2012 , 100, 213909	3.4	27
344	Spin-state transition in Ba2Co9O14. <i>Physical Review B</i> , 2012 , 85,	3.3	12
343	Pressure effect on the structural transition and suppression of the high-spin state in the triple-layer T'-La4Ni3O8. <i>Physical Review Letters</i> , 2012 , 108, 236403	7.4	29
342	Magnetic and transport properties of layered LixCo0.5RhO3. <i>Applied Physics Letters</i> , 2012 , 101, 102409	3.4	1
341	Chemical pressure effects on pyrochlore spin ice. <i>Physical Review Letters</i> , 2012 , 108, 207206	7.4	57

(2011-2012)

340	Insight into Fe Incorporation in Li3V2(PO4)3/C Cathode Material. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1573-A1578	3.9	40
339	High-pressure synthesis and physical properties of perovskite and post-perovskite Ca1⊠SrxIrO3. <i>Physical Review B</i> , 2011 , 83,	3.3	34
338	Magnetic structure of LaCrO3 perovskite under high pressure from in situ neutron diffraction. <i>Physical Review Letters</i> , 2011 , 106, 057201	7.4	50
337	Hydrothermal synthesis and electrochemical properties of Li V(PO) C-based composites for lithium-ion batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2011 , 3, 3772-6	9.5	122
336	Oxygen-Deficient Perovskite Sr0.7Y0.3CoO2.65日s a Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2011 , 23, 5037-5044	9.6	54
335	Electrochemical Lithium Intercalation in Monoclinic Nb12O29. <i>Chemistry of Materials</i> , 2011 , 23, 2292-22	29316	40
334	High-pressure sequence of Ba3NiSb2O9 structural phases: new $S = 1$ quantum spin liquids based on Ni2+. <i>Physical Review Letters</i> , 2011 , 107, 197204	7.4	104
333	A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. <i>Science</i> , 2011 , 334, 1383-5	33.3	3392
332	NASICON-type Li1+2xZr2\(\text{Z}Cax(PO4)\)3 with high ionic conductivity at room temperature. <i>RSC Advances</i> , 2011 , 1, 1728	3.7	49
331	Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and	176	1940
<i>JJ</i>	metal-air batteries. <i>Nature Chemistry</i> , 2011 , 3, 546-50	17.6	±2 + ≥
330	metal-air batteries. <i>Nature Chemistry</i> , 2011 , 3, 546-50 Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589		160
330	Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589. Nickel foam supported Snto alloy film as anode for lithium ion batteries. <i>Journal of Power Sources</i> ,	99.6	160
330	Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589. Nickel foam supported Snto alloy film as anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 10673-10678 High lithium ion conduction in garnet-type Li6La3ZrTaO12. <i>Electrochemistry Communications</i> , 2011 ,	9 9.6 8.9	160 57 110
330 329 328	Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589. Nickel foam supported Snto alloy film as anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 10673-10678 High lithium ion conduction in garnet-type Li6La3ZrTaO12. <i>Electrochemistry Communications</i> , 2011 , 13, 1289-1292 Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. <i>Journal of the</i>	9 9.6 8.9 5.1	160 57 110
330 329 328 327	Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589. Nickel foam supported Sntto alloy film as anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 10673-10678 High lithium ion conduction in garnet-type Li6La3ZrTaO12. <i>Electrochemistry Communications</i> , 2011 , 13, 1289-1292 Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2132-5 Development and challenges of LiFePO4 cathode material for lithium-ion batteries. <i>Energy and</i>	9 9.6 8.9 5.1	16057110567
330 329 328 327 326	Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. <i>Chemistry of Materials</i> , 2011 , 23, 3587-3589. Nickel foam supported Snto alloy film as anode for lithium ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 10673-10678 High lithium ion conduction in garnet-type Li6La3ZrTaO12. <i>Electrochemistry Communications</i> , 2011 , 13, 1289-1292 Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2132-5 Development and challenges of LiFePO4 cathode material for lithium-ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 269-284 A novel solid oxide redox flow battery for grid energy storage. <i>Energy and Environmental Science</i> ,	9 9.6 8.9 5.1 16.4	16057110567898

322	Comments on charge density waves. Journal of Solid State Electrochemistry, 2011, 15, 285-291	2.6	4
321	Rechargeable alkali-ion cathode-flow battery. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10113		115
320	The influence on Fermi energy of Li-site change in LizTi1 $\sqrt[9]{N}$ iyS2 on crossing z = 1. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10160		2
319	Behavior of Li Guest in KNb5O13 Host with One-Dimensional Tunnels and Multiple Interstitial Sites. <i>Chemistry of Materials</i> , 2011 , 23, 3210-3216	9.6	17
318	Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties. <i>Chemical Communications</i> , 2011 , 47, 12852-4	5.8	103
317	CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1379	3.9	210
316	New Anode Framework for Rechargeable Lithium Batteries. <i>Chemistry of Materials</i> , 2011 , 23, 2027-2029	9.6	280
315	3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4. <i>Chemistry of Materials</i> , 2011 , 23, 3404-3407	9.6	162
314	Exfoliation from carbon nanotubes versus tube size on lithium insertion. <i>Electrochemistry Communications</i> , 2011 , 13, 125-128	5.1	17
313	Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. <i>Journal of Power Sources</i> , 2011 , 196, 1738-1743	8.9	69
312	Fe-based perovskites as electrodes for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 5478-5484	8.9	21
311	Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Li-ion solid electrolyte. <i>Journal of Power Sources</i> , 2011 , 196, 7760-7762	8.9	46
310	Crossover from itinerant-electron to localized-electron behavior in Sr(1-x)Ca(x)CrO3 perovskite solid solution. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 355601	1.8	7
309	Spin-state transitions in PrCoO3 studied with neutron powder diffraction. <i>Physical Review B</i> , 2011 , 84,	3.3	10
308	Evidence of three-dimensional Ising ferromagnetism in the A-site-ordered perovskite CaCu3Ge4O12. <i>Physical Review B</i> , 2011 , 83,	3.3	6
307	Spin and orbital ordering in Y1\(\mathbb{L}\) LaxVO3. <i>Physical Review B</i> , 2011 , 84,	3.3	20
306	High pressure route to generate magnetic monopole dimers in spin ice. <i>Nature Communications</i> , 2011 , 2, 478	17.4	59
305	Questionable collapse of the bulk modulus in CrN. <i>Nature Materials</i> , 2010 , 9, 284-284	27	2

304	Post-silicon is too late avoiding the \$50 million paperweight starts with validated designs 2010,		13
303	Magnetic and Transport Properties of Ba2Co9O14 and Ba1.9A0.1Co9O14 (A=La or Na). <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 114713	1.5	7
302	Redox Behaviors of Ni and Cr with Different Counter Cations in Spinel Cathodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2010 , 157, A770	3.9	19
301	Intrinsic structural distortion and superexchange interaction in the orthorhombic rare-earth perovskites RCrO3. <i>Physical Review B</i> , 2010 , 81,	3.3	94
300	Evolution of ferromagnetism in orthorhombic perovskites Sr1NPbxRuO3. <i>Physical Review B</i> , 2010 , 81,	3.3	22
299	Rate Properties and Elevated-Temperature Performances of LiNi[sub 0.5日]Cr[sub 2x]Mn[sub 1.5日]O[sub 4] (0日x日.8) as 5 V Cathode Materials for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A1269	3.9	49
298	A new pnictide superconductor without iron. Journal of the American Chemical Society, 2010, 132, 908-9	16.4	31
297	Defective Ni Perovskites as Cathode Materials in Intermediate-Temperature Solid-Oxide Fuel Cells: A Structure B roperties Correlation. <i>Chemistry of Materials</i> , 2010 , 22, 1071-1079	9.6	44
296	Pressure dependence of metal-insulator transition in perovskites RNiO3 (R=Eu, Y, Lu). <i>Physical Review B</i> , 2010 , 82,	3.3	19
295	Enhanced thermoelectric power near the quantum phase transition in the itinerant-electron ferromagnet MnSi. <i>Physical Review B</i> , 2010 , 82,	3.3	10
294	SrCo0.95Sb0.05O3las Cathode Material for High Power Density Solid Oxide Fuel Cells\(\textit{\textit{Chemistry}}\) of Materials, 2010 , 22, 789-798	9.6	77
293	Magnetic properties of R2Mn2O7 pyrochlore rare-earth solid solutions. <i>Physical Review B</i> , 2010 , 82,	3.3	5
292	Stress-induced perovskite to post-perovskite transition in CaIrO3 at room temperature. <i>Physical Review B</i> , 2010 , 82,	3.3	12
291	Challenges for Rechargeable Li Batteries. <i>Chemistry of Materials</i> , 2010 , 22, 587-603	9.6	7303
2 90	Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010 , 195, 280-284	8.9	62
289	Structure, morphology, and cathode performance of Li1\(\mathbb{I}\)[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. <i>Journal of Power Sources</i> , 2010 , 195, 2918-2923	8.9	47
288	Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition. <i>Journal of Power Sources</i> , 2010 , 195, 5351-5359	8.9	58
287	Thermal conductivity, electron transport, and magnetic properties of single-crystal Ca3Co2O6. <i>Physical Review B</i> , 2009 , 79,	3.3	25

286	Orbital hybridization in RVO3 perovskites: A high-pressure study. <i>Physical Review B</i> , 2009 , 80,	3.3	23
285	Spin fluctuations in the antiferromagnetic metal Nb12O29. <i>Physical Review B</i> , 2009 , 80,	3.3	15
284	Transition from a weak ferromagnetic insulator to an exchange-enhanced paramagnetic metal in the BaIrO3 polytypes. <i>Physical Review B</i> , 2009 , 80,	3.3	16
283	Reinvestigation of Li[sub 1½]Ti[sub y]V[sub 1½]S[sub 2] Electrodes in Suitable Electrolyte: Highly Improved Electrochemical Properties. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A73		11
282	Neutron Depth Profiling Applications to Lithium-Ion Cell Research. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A886	3.9	34
281	Study of the onset of superconductivity in underdoped La2\sumsrxCuO4. <i>New Journal of Physics</i> , 2009 , 11, 013057	2.9	4
280	Locating redox couples in the layered sulfides with application to Cu[Cr2]S4. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 2904-2911	3.3	33
279	Enhancement of the Nernst effect by stripe order in a high-T(c) superconductor. <i>Nature</i> , 2009 , 458, 743	3- 5 0.4	117
278	Reduction of the bulk modulus at high pressure in CrN. <i>Nature Materials</i> , 2009 , 8, 947-51	27	135
277	Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor. <i>Nature Physics</i> , 2009 , 5, 31-34	16.2	151
276	Double-Perovskite Anode Materials Sr2MMoO6 (M = Co, Ni) for Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2009 , 21, 2319-2326	9.6	189
275	Lithium Ion Intercalation Performance of Niobium Oxides: KNb5O13 and K6Nb10.8O30. <i>Chemistry of Materials</i> , 2009 , 21, 4753-4755	9.6	75
274	Thermopower across the stripe critical point of La1.6Nd0.4SrxCuO4: Evidence for a quantum critical point in a hole-doped high-Tc superconductor. <i>Physical Review B</i> , 2009 , 79,	3.3	33
273	Metal-metal transition in perovskite PbRuO3. <i>Physical Review B</i> , 2009 , 80,	3.3	18
272	A new perovskite polytype in the high-pressure sequence of BaIrO(3). <i>Journal of the American Chemical Society</i> , 2009 , 131, 7461-9	16.4	31
271	Access to M[sup 3+]/M[sup 2+] Redox Couples in Layered LiMS[sub 2] Sulfides (M=Ti, V, Cr) as Anodes for Li-Ion Battery. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A703	3.9	40
270	High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. <i>Chemistry of Materials</i> , 2008 , 20, 7237-7241	9.6	313
269	Intrinsic structural distortion in orthorhombic perovskite oxides. <i>Physical Review B</i> , 2008 , 77,	3.3	114

268	Critical behavior of the ferromagnetic perovskite BaRuO3. <i>Physical Review Letters</i> , 2008 , 101, 077206	7.4	42
267	Transition from orbital liquid to Jahn-Teller insulator in orthorhombic perovskites RTiO3. <i>Physical Review Letters</i> , 2008 , 101, 087205	7.4	50
266	Magnetic state of La1.36Sr1.64Mn2O7 probed by magnetic force microscopy. <i>Physical Review B</i> , 2008 , 77,	3.3	10
265	3D Framework Structure of a New Lithium Thiophosphate, LiTi2(PS4)3, as Lithium Insertion Hosts. <i>Chemistry of Materials</i> , 2008 , 20, 470-474	9.6	22
264	High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 7115-9	11.5	136
263	Frustrated superexchange interaction versus orbital order in a LaVO3 crystal. <i>Physical Review Letters</i> , 2008 , 100, 046401	7.4	17
262	Orbital mixing and ferromagnetism in LaMn1\(\mathbb{R}\)GaxO3. Physical Review B, 2008, 77,	3.3	28
261	Pressure induced metallization in ACrO3 in perovskite compounds. <i>Journal of Physics: Conference Series</i> , 2008 , 121, 022017	0.3	2
260	Interatomic versus intraatomic Ru interactions in perovskites. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 2989-2993	3.3	4
259	Lithium Intercalation into ATi2(PS4)3 (A=Li, Na, Ag). <i>Electrochemistry Communications</i> , 2008 , 10, 497-50	15.1	14
258	Breakdown of magnetic order in Mott insulators with frustrated superexchange interaction. <i>Physical Review B</i> , 2008 , 78,	3.3	25
257	Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band. Journal of Physical Chemistry C, 2008 , 112, 15060-15064	3.8	114
256	Orbital fluctuations and orbital flipping in RVO3 perovskites. <i>Physical Review Letters</i> , 2007 , 99, 197201	7.4	28
255	Orbital ordering in orthorhombic perovskites. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2394		51
254	Enhanced pressure dependence of magnetic exchange in A2+[V2]O4 spinels approaching the itinerant electron limit. <i>Physical Review Letters</i> , 2007 , 99, 187201	7.4	51
253	Electrochemical performance of La-doped Sr2MgMoO6IIn natural gas. <i>Electrochemistry Communications</i> , 2007 , 9, 1881-1885	5.1	69
252	Cathode materials: A personal perspective. <i>Journal of Power Sources</i> , 2007 , 174, 996-1000	8.9	170
251	Alternative anode materials for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2007 , 173, 1-10	8.9	335

250	Electronic, Optical, and Magnetic Properties of LiFePO4: Small Magnetic Polaron Effects. <i>Chemistry of Materials</i> , 2007 , 19, 3740-3747	9.6	193
249	VO: A strongly correlated metal close to a Mott-Hubbard transition. <i>Physical Review B</i> , 2007 , 76,	3.3	15
248	Superexchange interaction in orbitally fluctuating RVO3. <i>Physical Review Letters</i> , 2007 , 99, 156401	7.4	43
247	Structural transformation and magnetic competition in Yb(Mn1\(\text{M} \) Fex)O3. <i>Physical Review B</i> , 2007 , 76,	3.3	18
246	Correlation between the structure and the spin state in R1\(\mathbb{B}\)SrxCoO3 (R=La, Pr, and Nd). <i>Physical Review B</i> , 2007 , 76,	3.3	41
245	LiFePO4 High Electrochemical Performance at 60{degree sign}C with Purity Controlled by SQUID Magnetometry. <i>ECS Transactions</i> , 2006 , 3, 119-129	1	3
244	Specific heat of geometrically frustrated and multiferroic RMn1⊠GaxO3 (R=Ho,Y). <i>Physical Review B</i> , 2006 , 74,	3.3	17
243	Systematic studies on effects of cationic ordering on structural and magnetic properties in Sr2FeMoO6. <i>Physical Review B</i> , 2006 , 73,	3.3	53
242	Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1692	3.9	160
241	Double perovskites as anode materials for solid-oxide fuel cells. <i>Science</i> , 2006 , 312, 254-7	33.3	827
240	Synthesis and Characterization of Sr[sub 2]MgMoO[sub 6¶ <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1266	3.9	162
239	Anomalous electronic state in CaCrO3 and SrCrO3. <i>Physical Review Letters</i> , 2006 , 96, 046408	7.4	75
238	Ferromagnetic behavior of carbon nanospheres encapsulating silver nanoparticles. <i>Physical Review B</i> , 2006 , 74,	3.3	22
237	Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. <i>Physical Review Letters</i> , 2006 , 96, 247202	7.4	170
236	Hexagonal versus perovskite phase of manganite RMnO3 (R=Y,Ho,Er,Tm,Yb,Lu). <i>Physical Review B</i> , 2006 , 74,	3.3	144
235	Selective synthesis of TbMn(2)O(5) nanorods and TbMnO(3) micron crystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14454-5	16.4	55
234	Improving Lithium Batteries by Tethering Carbon-Coated LiFePO[sub 4] to Polypyrrole. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A2282	3.9	152
233	Crystal and Magnetic Structure of the Orthorhombic Perovskite YbMnO3. <i>Chemistry of Materials</i> , 2006 , 18, 2130-2134	9.6	60

(2005-2006)

232	Suppression of ferromagnetic double exchange by vibronic phase segregation. <i>Physical Review Letters</i> , 2006 , 96, 016402	7.4	34
231	Exchange interaction in the insulating phase of RNiO3. <i>Physical Review Letters</i> , 2005 , 95, 127204	7.4	52
230	Effect of Ga doping on the multiferroic properties of RMn1⊠GaxO3 (R=Ho,Y). <i>Physical Review B</i> , 2005 , 72,	3.3	56
229	Localized or itinerant TiO3electrons in RTiO3perovskites. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 7395-7406	1.8	71
228	Bulk modulus anomaly in RCoO3 (R=La, Pr, and Nd). <i>Physical Review B</i> , 2005 , 71,	3.3	80
227	LSGM-Based Solid Oxide Fuel Cell with 1.4 W/cm2 Power Density and 30 Day Long-Term Stability. Journal of the Electrochemical Society, 2005, 152, A1511	3.9	68
226	Universal octahedral-site distortion in orthorhombic perovskite oxides. <i>Physical Review Letters</i> , 2005 , 94, 065501	7.4	96
225	Pressure-induced non-Fermi-liquid behavior of PrNiO3. <i>Physical Review Letters</i> , 2005 , 94, 226602	7.4	68
224	Semiconductor-semiconductor transition in Mg[Ti2]O4. <i>Physical Review B</i> , 2005 , 72,	3.3	25
223	Role of Doping and Dimensionality in the Superconductivity of NaxCoO2. <i>Chemistry of Materials</i> , 2005 , 17, 1965-1968	9.6	34
222	Synthesis and Electrical Properties of Dense Ce0.9Gd0.1O1.95 Ceramics. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 357-362	3.8	197
221	Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 2565-2575	3.8	381
220	Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: II, ac Impedance Spectroscopy. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 2576-2580	3.8	98
219	Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: III, Performance Tests of Single Ceramic Fuel Cells. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 2581	- 25 85	128
218	Coexistence of two electronic phases in LaTiO3+(0.01?20.12) and their evolution with []Physical Review B, 2005, 71,	3.3	10
217	Opposing spin-canting mechanism in single-crystal LuVO3 and YVO3. <i>Physical Review B</i> , 2005 , 72,	3.3	28
216	Evidence for two electronic phases in Y1\(\text{LaxTiO3} \) from thermoelectric and magnetic susceptibility measurements. <i>Physical Review B</i> , 2005 , 71,	3.3	12
215	Effect of high-pressure annealing on magnetoresistance in manganese perovskites. <i>Journal of Applied Physics</i> , 2005 , 98, 033911	2.5	3

BOND-LENGTH FLUCTUATIONS IN TRANSITION-METAL OXIDES. Modern Physics Letters B, 2005, 19, 1057£608111 214 Detection of temperature- and stress-induced modifications of LaCoO3 by micro-Raman 213 46 3.3 spectroscopy. Physical Review B, 2005, 72, Suppression of the magnetic phase transition in manganites close to the metal-insulator crossover. 212 28 3.3 Physical Review B, 2004, 70, Competing magnetic phases in mixed-valent manganese oxide perovskites. Physical Review B, 2004, 38 211 3.3 Unusually strong orbit-lattice interactions in the RVO3 perovskites. Physical Review Letters, 2004, 210 7.4 49 93.235901 Ferromagnetism in LaCoO3. Physical Review B, 2004, 70, 129 209 3.3 208 Structure anomaly and electronic transition in RNiO3 (R=La,Pr, [Gd). Physical Review B, 2004, 70, 24 3.3 Bond-length fluctuations and the spin-state transition in LCoO3 (L=La, Pr, and Nd). Physical Review 207 3.3 164 B, 2004, 69, Chemical bonding and electronic structure of RNiO3 (R=rare earth). Physical Review B, 2004, 69, 206 3.3 73 X-ray diffraction, magnetic, and transport study of lattice instabilities and metal-insulator transition 205 3.3 10 in CaV1\(\text{\text{TixO3}}(0?x?0.4)\). Physical Review B, **2004**, 69, Electronic and ionic transport properties and other physical aspects of perovskites. Reports on 204 14.4 483 Progress in Physics, **2004**, 67, 1915-1993 Thermal conductivity of La2\(\text{NSrxCuO4}(0.05 ?x? 0.22)\). New Journal of Physics, 2004, 6, 143-143 203 2.9 VI bond length fluctuations in VO x. Europhysics Letters, 2003, 61, 527-533 1.6 202 7 Rare earth Imanganese perovskites. Fundamental Theories of Physics, 2003, 249-351 201 0.8 20 Bond-length fluctuations in the copper oxide superconductors. Journal of Physics Condensed Matter 1.8 200 20 , 2003, 15, R257-R326 Oxide-Ion Electrolytes. Annual Review of Materials Research, 2003, 33, 91-128 12.8 199 534 Spin-glass to ferromagnet transition in LaMn1⊠ScxO3. Solid State Sciences, 2002, 4, 297-304 38 198 3.4 The transport properties in strongly correlated BaCo0.9Ni0.1S1.87. Journal of Physics Condensed 1.8 197 2 Matter, 2002, 14, 10699-10704

196	Ordering of bond length fluctuations in the copper-oxide superconductors. <i>Europhysics Letters</i> , 2002 , 57, 550-556	1.6	13
195	Evolution of polaron size in La2\square\square\notation NiO4. <i>Physical Review B</i> , 2002 , 66,	3.3	17
194	Phase competition in L0.5A0.5MnO3 perovskites. <i>Physical Review B</i> , 2002 , 66,	3.3	32
193	Li2NaV2(PO4)3: A 3.7 V Lithium-Insertion Cathode with the Rhombohedral NASICON Structure. Journal of Solid State Chemistry, 2001 , 162, 176-181	3.3	110
192	Oxide-ion conducting ceramics for solid oxide fuel cells. <i>Journal of Materials Science</i> , 2001 , 36, 1093-10	984.3	104
191	Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings. <i>Materials Research Bulletin</i> , 2001 , 36, 81-95	5.1	75
190	Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange vs. Lattice Oxygen Diffusion. <i>Journal of the Electrochemical Society</i> , 2001 , 148, E203	3.9	61
189	Nanocrystalline Lithium Manganese Oxide Spinel Cathode for Rechargeable Lithium Batteries. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, A49		52
188	Instability of brannerite cathode materials upon lithium insertion. Solid State Sciences, 2001, 3, 875-879)	12
187	Increasing Power Density of LSGM-Based Solid Oxide Fuel Cells Using New Anode Materials. Journal of the Electrochemical Society, 2001 , 148, A788	3.9	170
186	Effect of Ball-Milling on 3-V Capacity of Lithium Manganese Oxospinel Cathodes. <i>Chemistry of Materials</i> , 2001 , 13, 1758-1764	9.6	89
185	Oxide-ion conductors by design. <i>Nature</i> , 2000 , 404, 821, 823	50.4	212
184	Li [Mn2] O 4 Spinel Cathode Material Showing No Capacity Fading in the 3 V Range. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 3621	3.9	51
183	Transition from itinerant to polaronic conduction in La 1 lk Sr x CoO 3 perovskites. <i>Europhysics Letters</i> , 1999 , 45, 399-405	1.6	38
182	Wet Chemical Synthesis of Sr- and Mg-Doped LaGaO3, a Perovskite-Type Oxide-Ion Conductor. Journal of Solid State Chemistry, 1998 , 136, 274-283	3.3	62
181	Mapping of Redox Energies. <i>Molecular Crystals and Liquid Crystals</i> , 1998 , 311, 1-14		10
180	Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 1518-1520	3.9	162
179	JAHN-TELLER PHENOMENA IN SOLIDS. <i>Annual Review of Materials Research</i> , 1998 , 28, 1-27		196

178	Extrinsic giant magnetoresistance in chromium (IV) oxide, CrO2. Applied Physics Letters, 1998, 72, 984-9	9864	94
177	Keggin-Type Heteropolyacids as Electrode Materials for Electrochemical Supercapacitors. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 737-743	3.9	71
176	Electrode Performance Test on Single Ceramic Fuel Cells Using as Electrolyte Sr- and Mg-Doped LaGaO3. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 3620-3624	3.9	134
175	Pressure and Isotope Effects in the Manganese-Oxide Perovskites. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 494, 335		6
174	Electronic structure of CMR manganites (invited). Journal of Applied Physics, 1997, 81, 5330-5335	2.5	168
173	Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1188-1194	3.9	6061
172	Transport and Magnetic Properties of the Perovskites La1-yMnO3 and LaMn1-zO3. <i>Chemistry of Materials</i> , 1997 , 9, 1467-1474	9.6	134
171	Pressure-Induced Polaronic to Itinerant Electronic Transition in La1\(\mathbb{B}\)SrxMnO3 Crystals. <i>Physical Review Letters</i> , 1997 , 79, 3234-3237	7.4	150
170	Sign Reversal of the Mn-O Bond Compressibility in La1.2Sr1.8Mn2O7 below TC: Exchange Striction in the Ferromagnetic State. <i>Physical Review Letters</i> , 1997 , 78, 1568-1571	7.4	125
169	Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 2581-2586	3.9	299
168	Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1609-1613	3.9	1030
167	Vibronic states in La{2-x}BaxCuO4BaxCuO4. <i>Journal of Superconductivity and Novel Magnetism</i> , 1997 , 10, 309-314		5
166	Characterization of Sr-Doped LaMnO3 and LaCoO3 as Cathode Materials for a Doped LaGaO3 Ceramic Fuel Cell. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 3630-3636	3.9	107
165	Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4[ii2Mn4O9[ii4Mn5O12System. <i>Journal of Solid State Chemistry</i> , 1996 , 123, 255-266	3.3	207
164	Fuel cells with doped lanthanum gallate electrolyte. <i>Journal of Power Sources</i> , 1996 , 63, 47-51	8.9	89
163	Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-Doped LaGaO3 Perovskite. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 1100-1104	3.8	141
162	Identification of a new type of electronic state in the magnetoresistive orthomanganites. <i>Nature</i> , 1996 , 381, 770-772	50.4	76
161	Non-adiabatic electron-lattice interactions in the copper-oxide superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 1995 , 8, 541-544		21

160	Magnetic and transport properties of CeVO3. Journal of Solid State Chemistry, 1995, 119, 24-35	3.3	30
159	Transport properties of Cu-O chains in Sr2CuO3+ delta. <i>Physical Review B</i> , 1995 , 52, 16101-16105	3.3	11
158	Comment on "Quasiclassical transport at a van Hove singularity in cuprate superconductors". <i>Physical Review Letters</i> , 1995 , 75, 979	7.4	5
157	Chain contribution to the Seebeck coefficient in YBa2Cu3O7- delta. <i>Physical Review B</i> , 1995 , 51, 3250-32	2 <i>5</i> .3	28
156	Thermoelectric power in single-layer copper oxides. <i>Physical Review B</i> , 1995 , 51, 3104-3115	3.3	80
155	Magnetic studies of some orthovanadates. <i>Physical Review B</i> , 1995 , 52, 324-334	3.3	115
154	Localized-itinerant electronic transition in the perovskite system La1-xCaxVO3. <i>Physical Review B</i> , 1995 , 52, 8776-8787	3.3	35
153	Localized-Itinerant Electron Transitions in the Orthomanganites. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 401, 515		2
152	Solid electrolytes. Pure and Applied Chemistry, 1995 , 67, 931-938	2.1	13
151	Crystalline solid electrolytes II: Material design 1994 , 43-73		1
150	Effect of pressure and quenching on superconductive La2CuO4+ delta (0Physical Review B, 1994 , 50, 4168-4180	3.3	29
149	Superconductor-to-metal transition in overdoped La2-xSrxCuO4. <i>Physical Review B</i> , 1994 , 49, 9084-9090	03.3	32
148	Local structure, magnetism, and superconductivity in Sr analogs of Fe-doped YBa2Cu3 Fe y O6+x. <i>Hyperfine Interactions</i> , 1994 , 93, 1665-1670	0.8	
147	Improving Stabilized Zirconia with Strontium Gallate. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1954-1956	3.8	11
146	Vibronic dispersion in the copper oxide superconductors. <i>Physical Review B</i> , 1994 , 49, 4251-4260	3.3	44
145	Thallium solubility range in Tl2 ☐Ba2Can ☐ CunO2n+ 4 ☐ superconductors. <i>Journal of Materials Chemistry</i> , 1994 , 4, 1627-1633		5
144	Improved Oxide Ion Electrolytes. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 369, 333		4
143	Perovskites as Oxide-Ion Electrolytes. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 369, 343		1

Copper oxide superconductors: A distinguishable thermodynamic state. Physical Review B, 1993, 47, 5275-528666 142 Copper-oxygen bond length and self-doping in R2CuO4 (R=Pr, Nd, Sm, Eu, Gd). Physical Review B, 141 3.3 19 **1993**, 47, 5477-5480 Electronic structure of BaSn1-xSbxO3 studied by photoemission spectroscopy. Physical Review B, 140 3.3 21 **1993**, 47, 1788-1793 Metal-metal versus anion-anion bonding in B31 structures. Journal of Applied Physics, 1993, 73, 5704-57065 139 Effect of annealing on the local microstructure and Tc in Y1-zCazBa2(Cu0.90Co0.10)3O6+y. Physical 138 3.3 14 Review B, 1992, 46, 3041-3049 First-order changes in ionic/covalent bonding. Ferroelectrics, 1992, 130, 77-86 0.6 137 25 Hole concentration and critical temperature in Tl2

☐ Ba2 ☐LazCuO6 ☐. Journal of Materials 136 1 Chemistry, 1992, 2, 317-321 Oxygen reduction on Ru-oxide pyrochlores bonded to a proton-exchange membrane. Journal of 2.6 135 47 Applied Electrochemistry, 1992, 22, 140-150 CRYSTAL CHEMISTRY AND SUPERCONDUCTIVITY IN THE COPPER OXIDES 1991, 1-56 134 4 Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1 \(\textstyle{\textstyle{Int}} \) NdyCu02. Nature, 133 50.4 414 **1991**, 351, 549-551 Effect of percolation in an intergrowth structure. Journal of Physics Condensed Matter, 1991, 3, 2479-2497.8 132 5 Lattice instabilities near the critical V-V separation for localized versus itinerant electrons in 131 3.3 55 LiV1-yMyO2 (M=Cr or Ti) Li1-xVO2. *Physical Review B*, **1991**, 43, 10170-10178 Pressure-induced high-spin to low-spin transition in CaFeO3. Physical Review Letters, 1991, 67, 3267-327\(\theta\).4 130 109 Charge fluctuations and an ionic ovalent transition in La2 SrxCuO4. Journal of Materials 129 27 Chemistry, 1991, 1, 715-724 Electron diffraction and microscopy study of oxygen ordering in YBa2Cu3O7-IJournal of Materials 128 38 2.5 Research, 1990, 5, 9-16 The Molecular Engineering of Oxides: 1989 MRS Fall Meeting Von Hippel Award Address. MRS 6 127 3.2 Bulletin, 1990, 15, 23-30 New Oxide-Ion Electrolytes. Materials Research Society Symposia Proceedings, 1990, 210, 287 126 2 Hydrogen Evolution on Sr x NbO3 \blacksquare (0.7 \not \not \not \not \not \not \not \not 0.95) in Acid. Journal of the Electrochemical 125 13 3.9 Society, 1990, 137, 910-913

124	Surface protonation and electrochemical activity of oxides in aqueous solution. <i>Journal of the American Chemical Society</i> , 1990 , 112, 2076-2082	16.4	163
123	Correlation bag and high-Tc superconductivity. <i>Physical Review B</i> , 1990 , 42, 4276-4287	3.3	48
122	Thermoelectric power of high-Tc superconductors. <i>Physical Review B</i> , 1990 , 41, 8723-8731	3.3	49
121	c-axis oxygen in copper oxide superconductors. <i>Physical Review B</i> , 1990 , 42, 138-149	3.3	36
120	X-ray photoemission spectroscopy study of LaCuO3. <i>Physical Review B</i> , 1990 , 41, 11572-11575	3.3	31
119	Phase transitions in high-T c superconductive oxides. <i>Phase Transitions</i> , 1990 , 22, 79-101	1.3	7
118	Chemical and structural relationships in high-Tcmaterials. <i>Superconductor Science and Technology</i> , 1990 , 3, 26-37	3.1	133
117	Ceramic Superconductors. Advances in Chemistry Series, 1989, 287-321		
116	Evidence for some suppression of magnetic moments in superconductive copper oxides. <i>Physica C: Superconductivity and Its Applications</i> , 1989 , 157, 439-445	1.3	19
115	NMR relaxation times and proton motion in HxWO3. <i>Applied Physics A: Solids and Surfaces</i> , 1989 , 49, 65	5-68	2
114	A Nafion -bound platinized carbon electrode for oxygen reduction in solid polymer electrolyte cells. <i>Journal of Applied Electrochemistry</i> , 1989 , 19, 383-386	2.6	19
114		2.6	19
	cells. Journal of Applied Electrochemistry, 1989 , 19, 383-386 Efficient oxygen reduction in alkaline solution with platinum phthalocyanine on porous carbon.		
113	cells. Journal of Applied Electrochemistry, 1989, 19, 383-386 Efficient oxygen reduction in alkaline solution with platinum phthalocyanine on porous carbon. Journal of Applied Electrochemistry, 1989, 19, 105-107 Comment on "Identification of a superoxide in superconducting La2CuO4+ delta by x-ray	2.6	16
113	cells. Journal of Applied Electrochemistry, 1989, 19, 383-386 Efficient oxygen reduction in alkaline solution with platinum phthalocyanine on porous carbon. Journal of Applied Electrochemistry, 1989, 19, 105-107 Comment on "Identification of a superoxide in superconducting La2CuO4+ delta by x-ray photoelectron spectroscopy". Physical Review B, 1989, 39, 12331-12333 Identifying the Pairing Mechanism in High-Tc Superconductors. Materials Research Society Symposia	2.6	16 62
113	cells. Journal of Applied Electrochemistry, 1989, 19, 383-386 Efficient oxygen reduction in alkaline solution with platinum phthalocyanine on porous carbon. Journal of Applied Electrochemistry, 1989, 19, 105-107 Comment on "Identification of a superoxide in superconducting La2CuO4+ delta by x-ray photoelectron spectroscopy". Physical Review B, 1989, 39, 12331-12333 Identifying the Pairing Mechanism in High-Tc Superconductors. Materials Research Society Symposia Proceedings, 1989, 156, 339 Study of the electroreduction of dioxygen on thin films of platinum phthalocyanine in alkaline	2.6	16 62 5
113 112 111 110	cells. Journal of Applied Electrochemistry, 1989, 19, 383-386 Efficient oxygen reduction in alkaline solution with platinum phthalocyanine on porous carbon. Journal of Applied Electrochemistry, 1989, 19, 105-107 Comment on "Identification of a superoxide in superconducting La2CuO4+ delta by x-ray photoelectron spectroscopy". Physical Review B, 1989, 39, 12331-12333 Identifying the Pairing Mechanism in High-Tc Superconductors. Materials Research Society Symposia Proceedings, 1989, 156, 339 Study of the electroreduction of dioxygen on thin films of platinum phthalocyanine in alkaline solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 239, 273-289 The electroreduction of oxygen on thin films of platinum phthalocyanine in alkaline solutions.	2.6	16 62 5

106	Oxygen atom thermal vibration anisotropy in Ba0.87K0.13BiO3. Applied Physics Letters, 1988, 53, 1753-	13.55	51
105	Evidence for peroxide formation in superconducting YBa2-xLaxCu3O7+/- delta. <i>Physical Review B</i> , 1988 , 37, 3734-3737	3.3	73
104	Vanishing of superconductivity at a transition from itinerant-electron to small-polaron conduction in nominal Bi4\(\mathbb{B}\) Pbx(Sr3Ca)Ca2\(\mathbb{B}\)YxCu4O16. Applied Physics Letters, 1988 , 53, 2695-2697	3.4	19
103	Dependence of Tc on hole concentration in the superconductors Bi4Sr3Ca3\(\text{\text{\text{B}}}\)YxCu4O16+\(\text{\text{\text{\text{\text{B}}}}\)Physics Letters, 1988 , 53, 420-422	3.4	111
102	THE ROLE OF OXYGEN IN YBa2Cu3O7[International Journal of Modern Physics B, 1988, 02, 379-391	1.1	11
101	Lithium Insertion Compounds. <i>Materials Research Society Symposia Proceedings</i> , 1988 , 135, 391		17
100	Co and Fe substitution in YBa2Cu3O7\(\textit{D}\) Journal of Materials Research, 1988 , 3, 248-256	2.5	52
99	Oxygen clustering in 123 copper oxides having disordered or excess (>7.0) oxygen. <i>Superconductor Science and Technology</i> , 1988 , 1, 187-193	3.1	9
98	Electrical and magnetic measurements for LiyMg(Yb2)X4, X=S or Se. <i>Journal of Physics C: Solid State Physics</i> , 1987 , 20, 3391-3400		3
97	Comments on "Electrical transport properties of iron(II) molybdate". <i>Journal of Materials Science Letters</i> , 1987 , 6, 939-941		4
96	High-performance carbon electrodes for acid methanolBir fuel cells. <i>Journal of Applied Electrochemistry</i> , 1987 , 17, 413-418	2.6	9
95	Lithiated rare-earth thiospinels and selenospinels. <i>Journal of Solid State Chemistry</i> , 1987 , 70, 121-128	3.3	13
94	The electroreduction of dioxygen on thin films of gold in alkaline solution. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1987 , 234, 193-211		26
93	The electroreduction of oxygen on pyrolytic graphite. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1987 , 233, 147-159		71
92	Synthesis of the high-Tc superconductor YBa2Cu3O7lin small particle size. <i>Nature</i> , 1987 , 329, 701-703	50.4	115
91	MBsbauer characterization of LixFe3O4. <i>Hyperfine Interactions</i> , 1986 , 28, 769-772	0.8	3
90	Structural and magnetic characterization of the lithiated iron oxide LixFe3O4. <i>Journal of Applied Physics</i> , 1986 , 59, 1918-1926	2.5	38
89	Evidence of the anomalous charge state 57Fe4+ in the nuclear decay of 57Co3+. <i>Physical Review Letters</i> , 1986 , 57, 1931-1934	7.4	7

88	Bond-length mismatch in intergrowth structures. <i>Journal of the Less Common Metals</i> , 1986 , 116, 83-93		10
87	High efficiency cathodes for alkaline air electrodes. <i>Journal of Applied Electrochemistry</i> , 1985 , 15, 774-77	77. 6	12
86	NMR study of the cation distribution in the systems Li1+5xTa1\(\mathbb{Q}\)O3 and Li1+xTa1\(\mathbb{U}\)TixO3. Materials Research Bulletin, 1985 , 20, 679-686	5.1	17
85	AC Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li1 িk CoO2. <i>Journal of the Electrochemical Society</i> , 1985 , 132, 1521-1528	3.9	258
84	The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1985 , 52, 679-699		110
83	Cathodic reduction of oxygen by platinum phthalocyanine thin films. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1984 , 160, 359-367		16
82	Valence states and magnetic properties of LaNi1-xMnxO3(for 0?x?0.2 and x=0.5). <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 2745-2760		83
81	Magnetic order or charge-density wave in La2NiO4 by MBsbauer spectroscopy. <i>Physical Review B</i> , 1984 , 30, 6320-6326	3.3	25
80	Electrochemistry of ruthenates. Part 1. Dxygen reduction on pyrochlore ruthenates. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1983 , 79, 893		86
79	New anode materials for photoelectrolysis. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1983 , 79, 1199		46
78	Electrochemistry and photoelectrochemistry of iron(III) oxide. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1983 , 79, 2027		424
77	The metal-to-semiconductor transition in ternary ruthenium (IV) oxides: a study by electron spectroscopy. <i>Journal of Physics C: Solid State Physics</i> , 1983 , 16, 6221-6239		168
76	Photoresponse of n-type semiconductor NiTiO3. <i>Applied Physics Letters</i> , 1982 , 40, 188-190	3.4	23
75	Photoelectrochemical properties of n-type NiTiO3. <i>Journal of Applied Physics</i> , 1982 , 53, 7003-7013	2.5	30
74	MEsbauer 57Fe isomer shift as a measure of valence in mixed-valence iron sulfides. <i>Journal of Solid State Chemistry</i> , 1982 , 41, 1-22	3.3	51
73	Photoelectrochemistry of nickel(II) oxide. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1981 , 77, 643		77
72	The Ada compiler validation capability. ACM SIGPLAN Notices, 1980, 15, 1-8	0.2	12
71	MEsbauer 57Fe spectra exhibiting Elerrous character [] Journal of Solid State Chemistry, 1980, 33, 219-232	3.3	30

7º	Solid-Solution Oxides for Storage-Battery Electrodes. Japanese Journal of Applied Physics, 1980, 19, 305	1.4	75
69	Sensitisation of semiconducting electrodes with ruthenium-based dyes. <i>Faraday Discussions of the Chemical Society</i> , 1980 , 70, 285		74
68	Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser. <i>Nature</i> , 1979 , 280, 571-573	50.4	171
67	Impurity levels of iron-group ions in TiO2(II). Journal of Physics and Chemistry of Solids, 1979, 40, 1129-1	1 <u>4</u> .6j	158
66	Structural chemistry of iron sulfides. <i>Materials Research Bulletin</i> , 1978 , 13, 1305-1314	5.1	37
65	X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. <i>Journal of Applied Physics</i> , 1977 , 48, 3524-3531	2.5	879
64	Etude des proprietes magnetiques, electriques et optiques des phases de structure perovskite SrVO2.90 et SrVO3. <i>Journal of Solid State Chemistry</i> , 1975 , 14, 247-259	3.3	83
63	Oxide engineering. Journal of Solid State Chemistry, 1975 , 12, 148-155	3.3	6
62	Exception handling design issues. ACM SIGPLAN Notices, 1975, 10, 41-45	0.2	12
61	Toward a theory of test data selection. <i>IEEE Transactions on Software Engineering</i> , 1975 , SE-1, 156-173	3.5	225
60	Exception handling. Communications of the ACM, 1975, 18, 683-696	2.5	326
59	. IEEE Transactions on Software Engineering, 1975 , SE-1, 425-426	3.5	1
58	Toward a theory of test data selection. ACM SIGPLAN Notices, 1975, 10, 493-510	0.2	28
57	Crystallography, magnetism, and band structure of Mn5Ni2Bi4-type compounds. <i>Physical Review B</i> , 1974 , 10, 120-127	3.3	15
56	Exploring the A+B5+O3 compounds. <i>Journal of Solid State Chemistry</i> , 1973 , 6, 493-501	3.3	92
55	Structures and a Two-Band Model for the System V1\(\mathbb{U}\)CrxO2. <i>Physical Review B</i> , 1973 , 8, 1323-1331	3.3	66
54	Structure of Orthorhombic V0.95 Cr0.05 O2. Physical Review B, 1972, 5, 4104-4111	3.3	28
53	Influence of Atomic Vacancies on the Properties of Transition-Metal Oxides. I. TiOx and VOx. <i>Physical Review B</i> , 1972 , 5, 2764-2774	3.3	74

52	Comment on the magnetic properties of several indium thiospinels. <i>Journal of Solid State Chemistry</i> , 1972 , 4, 292-293	3.3	4
51	Effects of Co2+ and Mn3+ ion substitutions on the anisotropy and magnetostriction constants of Y3Fe5O12. <i>Materials Research Bulletin</i> , 1972 , 7, 749-759	5.1	38
50	Energy bands in TX2 compounds with pyrite, marcasite, and arsenopyrite structures. <i>Journal of Solid State Chemistry</i> , 1972 , 5, 144-152	3.3	159
49	Coexistence of localized and itinerant d electrons. <i>Materials Research Bulletin</i> , 1971 , 6, 967-976	5.1	110
48	Conceptual phase diagram and its application to the spontaneous magnetism of several pyrites. <i>Journal of Solid State Chemistry</i> , 1971 , 3, 26-38	3.3	47
47	The two components of the crystallographic transition in VO2. <i>Journal of Solid State Chemistry</i> , 1971 , 3, 490-500	3.3	1052
46	Seebeck coefficients in vanadium spinels. <i>Materials Research Bulletin</i> , 1970 , 5, 621-629	5.1	55
45	Magnetic and Optical Properties of the High- and Low-Pressure Forms of CsCoF3. <i>Journal of Applied Physics</i> , 1970 , 41, 935-936	2.5	13
44	Effects of Hydrostatic Pressure and of Jahn-Teller Distortions on the Magnetic Properties of RbFeF3. <i>Physical Review B</i> , 1970 , 2, 4640-4645	3.3	13
43	Effects of Pressure on the Magnetic Properties of MnAs. <i>Physical Review</i> , 1969 , 177, 942-951		205
42	Pressure-Effect Measurements Using a Vibrating-Coil Magnetometer. <i>Journal of Applied Physics</i> , 1969 , 40, 1324-1326	2.5	31
41	Localized vs Collective Descriptions of Magnetic Electrons. <i>Journal of Applied Physics</i> , 1968 , 39, 403-411	l 2.5	67
40	Spin-Orbit-Coupling Effects in Transition-Metal Compounds. <i>Physical Review</i> , 1968 , 171, 466-479		116
39	A Localized-Electron to Collective-Electron Transition in the System (La, Sr)CoO3. <i>Journal of Applied Physics</i> , 1968 , 39, 1209-1210	2.5	243
38	Magnetic Properties of SrRuO3 and CaRuO3. Journal of Applied Physics, 1968, 39, 1327-1328	2.5	366
37	Resistivity and Magnetic Order in Ti2O3. <i>Journal of Applied Physics</i> , 1968 , 39, 594-595	2.5	111
36	High-Pressure Study of the First-Order Phase Transition in MnAs. <i>Physical Review</i> , 1967 , 157, 389-395		134
35	Spontaneous Band Magnetism. <i>Journal of Applied Physics</i> , 1967 , 38, 1054-1056	2.5	6

34	Theory of the Magnetic Properties of the Ilmenites MTiO3. <i>Physical Review</i> , 1967 , 164, 768-778		46
33	Localized versus Collective d Electrons and NBI Temperatures in Perovskite and Perovskite-Related Structures. <i>Physical Review</i> , 1967 , 164, 785-789		143
32	Narrow-band electrons in transition-metal oxides. European Physical Journal D, 1967, 17, 304-336		162
31	First-Order Localized-Electron ? Collective-Electron Transition in LaCoO3. <i>Physical Review</i> , 1967 , 155, 932-943		778
30	Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure. <i>Journal of Applied Physics</i> , 1966 , 37, 1415-1422	2.5	236
29	Single-Crystal Growth and Properties of the Perovskites LaVO3 and YVO3. <i>Journal of Applied Physics</i> , 1966 , 37, 1431-1432	2.5	72
28	A lightpen-controlled program for online data analysis. Communications of the ACM, 1965, 8, 130-134	2.5	5
27	Complex vs Band Formation in Perovskite Oxides. <i>Journal of Applied Physics</i> , 1965 , 36, 1031-1032	2.5	175
26	Contextual correlates of synonymy. <i>Communications of the ACM</i> , 1965 , 8, 627-633	2.5	515
25	Chemical Inhomogeneities and Square B-H Loops. <i>Journal of Applied Physics</i> , 1965 , 36, 2342-2346	2.5	44
24	Electrical Conductivity in the Spinel System Co1\(\mathbb{L}\)LixV2O4. Journal of Applied Physics, 1964 , 35, 1069-10	70 .5	22
23	Spin Correlations Among Narrow-Band Electrons. <i>Journal of Applied Physics</i> , 1964 , 35, 1083-1084	2.5	16
22	Crystallographic Transitions in Several Chromium Spinel Systems. <i>Journal of Applied Physics</i> , 1963 , 34, 1085-1086	2.5	43
21	Atomic Moments and Magnetic Coupling in Cation Excess-Nickel Arsenides. <i>Journal of Applied Physics</i> , 1963 , 34, 1193-1194	2.5	4
20	Cation-Cation Three-Membered Ring Formation. <i>Journal of Applied Physics</i> , 1962 , 33, 1197-1199	2.5	25
19	Relationship Between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+. <i>Physical Review</i> , 1961 , 124, 373-384		628
18	Direct Cation-Cation Interactions in Primarily Ionic Solids. <i>Journal of Applied Physics</i> , 1960 , 31, S359-S36	512.5	23
17	Band Structure of Transition Metals and Their Alloys. <i>Physical Review</i> , 1960 , 120, 67-83		140

LIST OF PUBLICATIONS

16	Direct CationCation Interactions in Several Oxides. <i>Physical Review</i> , 1960 , 117, 1442-1451		511
15	Interpretation of the Magnetic and Crystallographic Properties of Several Iron, Nickel, and Iron-Nickel Nitrides. <i>Journal of Applied Physics</i> , 1960 , 31, S342-S343	2.5	31
14	Suggestion Concerning Magnetic Interactions in Spinels. <i>Physical Review</i> , 1959 , 115, 1156-1158		72
13	Some Magnetic and Crystallographic Properties of the System LaMn1⊠NixO3+□ <i>Journal of Applied Physics</i> , 1958 , 29, 387-389	2.5	86
12	Domain-Wall Structure in Permalloy Films. Journal of Applied Physics, 1958, 29, 294-295	2.5	150
11	Suggestion Concerning the Role of Wave-Function Symmetry in Transition Metals and Their Alloys. <i>Journal of Applied Physics</i> , 1958 , 29, 513-515	2.5	8
10	Some Ferrimagnetic Properties of the System LixNi1⊠O. <i>Journal of Applied Physics</i> , 1958 , 29, 382-383	2.5	46
9	Interpretation of Domain Patterns Recently Found in BiMn and SiFe Alloys. <i>Physical Review</i> , 1956 , 102, 356-365		105
8	Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3. <i>Physical Review</i> , 1955 , 100, 564-573		3162
7	Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels. <i>Physical Review</i> , 1955 , 98, 391-408		567
6	Magnetic Materials for Digital-Computer Components. I. A Theory of Flux Reversal in Polycrystalline Ferromagnetics. <i>Journal of Applied Physics</i> , 1955 , 26, 8-18	2.5	125
5	A Theory of Domain Creation and Coercive Force in Polycrystalline Ferromagnetics. <i>Physical Review</i> , 1954 , 95, 917-932		233
4	A Theory of the Deviation from Close Packing in Hexagonal Metal Crystals. <i>Physical Review</i> , 1953 , 89, 282-294		69
3	General Concepts1-25		3
2	A self-regulated gradient interphase for dendrite-free solid-state Li batteries. <i>Energy and Environmental Science</i> ,	35.4	16
1	Efficient Aqueous Electroreduction of CO2 to Formate at Low Overpotential on Indium Tin Oxide Nanocrystals. <i>Chemistry of Materials</i> ,	9.6	4