Jacek Stawinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2083896/publications.pdf Version: 2024-02-01

IACER STAMINSKI

#	Article	IF	CITATIONS
1	Arylsulfonyltetrazoles, new coupling reagents and further improvements in the triester method for the synthesis of deoxyribooligonucleotides1. Nucleic Acids Research, 1977, 4, 353-371.	14.5	251
2	Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Letters, 1986, 27, 4051-4054.	1.4	179
3	Microwave-Assisted Palladium-Catalyzed Cross-Coupling of Aryl and Vinyl Halides with H-Phosphonate Diesters. Organic Letters, 2008, 10, 4637-4640.	4.6	174
4	How To Get the Most Out of Two Phosphorus Chemistries. Studies on H-Phosphonates. Accounts of Chemical Research, 2002, 35, 952-960.	15.6	166
5	Preparation of Arylphosphonates by Palladium(0) atalyzed Cross oupling in the Presence of Acetate Additives: Synthetic and Mechanistic Studies. Advanced Synthesis and Catalysis, 2009, 351, 3207-3216.	4.3	147
6	A general method for the synthesis of glycerophospholipids and their analogs via H-phosphonate intermediates. Journal of Organic Chemistry, 1989, 54, 1338-1342.	3.2	132
7	A general method for inserting specific DNA sequences into cloning vehicles. Gene, 1976, 1, 81-92.	2.2	114
8	Nucleoside H-phosphonates. IV. Automated solid phase synthesis of oligoribonucleotides by the hydrogenphosphonate approach. Tetrahedron Letters, 1986, 27, 4055-4058.	1.4	111
9	Studies on aryl H-phosphonates. I. An efficient method for the preparation of deoxyribo- and ribonucleoside 3′-H-phosphonate monoesters by transesterification of diphenyl H-phosphonate. Tetrahedron Letters, 1994, 35, 3355-3358.	1.4	111
10	Synthesis and QSAR study of novel cytotoxic spiro[3H-indole-3,2′(1′H)-pyrrolo[3,4-c]pyrrole]-2,3′,5′(1H,2′aH,4′H)-triones. European Journa Chemistry, 2012, 47, 312-322.	l of M ædici	nal100
11	Cloned synthetic lac operator DNA is biologically active. Nature, 1976, 263, 744-748.	27.8	89
12	Pd(0)-Catalyzed Phosphorusâ^Carbon Bond Formation. Mechanistic and Synthetic Studies on the Role of the Palladium Sources and Anionic Additives. Organometallics, 2007, 26, 5840-5847.	2.3	82
13	Studies on the t-butyldimethylsilyl group as 2'-O-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucleic Acids Research, 1988, 16, 9285-9298.	14.5	81
14	Arylsulfonyltetrazoles as highly efficient condensing reagents for polynucleotide synthesis. Canadian Journal of Chemistry, 1976, 54, 670-672.	1.1	79
15	Palladium-Catalyzed Câ^'P Bond Formation: Mechanistic Studies on the Ligand Substitution and the Reductive Elimination. An Intramolecular Catalysis by the Acetate Group in Pd ^{II} Complexes. Organometallics, 2008, 27, 5876-5888.	2.3	79
16	Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 966-970.	7.1	73
17	H-Phosphonates: Versatile synthetic precursors to biologically active phosphorus compounds. Pure and Applied Chemistry, 2007, 79, 2217-2227.	1.9	72
18	Design, synthesis and QSAR studies of dispiroindole derivatives asÂnew antiproliferative agents. European Journal of Medicinal Chemistry, 2013, 68, 339-351.	5.5	65

#	Article	IF	CITATIONS
19	Nucleoside H-phosphonates. X. Studies on nucleoside hydrogenphosphonothioate diester synthesis. Tetrahedron Letters, 1989, 30, 2157-2160.	1.4	64
20	Palladium-Catalyzed Propargylic Substitution with Phosphorus Nucleophiles: Efficient, Stereoselective Synthesis of Allenylphosphonates and Related Compounds. Organic Letters, 2010, 12, 4702-4704.	4.6	61
21	Nucleoside phosphonates: part 7. Studies on the oxidation of nucleoside phosphonate esters. Journal of the Chemical Society Perkin Transactions 1, 1987, , 1269-1273.	0.9	58
22	Nucleoside 3'-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. IV. New method for removal of 2,2,2-trichioroethyl group and31NMR as a new tool for analysis of deblocking of intemucleotide phosphate protecting groups. Nucleic Acids Research, 1977, 4, 2321-2330.	14.5	54
23	Nucleoside H-phosphonates. 12. Synthesis of nucleoside 3'-(hydrogen phosphonothioate) monoesters via phosphinate intermediates. Journal of Organic Chemistry, 1990, 55, 3503-3506.	3.2	54
24	Aryl nucleoside H-phosphonates. Part 15: Synthesis, properties and, anti-HIV activity of aryl nucleoside 5′-α-hydroxyphosphonates. Bioorganic and Medicinal Chemistry, 2006, 14, 1924-1934.	3.0	52
25	Nucleoside H-Phosphonates. V. The Mechanism of Hydrogenphosphonate Diester Formation Using Acyl Chlorides as Coupling Agents in Oligonucleotide Synthesis by the Hydrogenphosphonate Approach. Nucleosides, Nucleotides and Nucleic Acids, 1987, 6, 655-662.	1.1	50
26	The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6-/N-threonylcarbonyl/-adenosine/t6A/1. Nucleic Acids Research, 1978, 5, 1889-1905.	14.5	49
27	Novel, Stereoselective and Stereospecific Synthesis of Allenylphosphonates and Related Compounds <i>via</i> Palladium atalyzed Propargylic Substitution. Advanced Synthesis and Catalysis, 2011, 353, 1741-1755.	4.3	47
28	Synthesis of diribonucleoside phosphorothioates via stereospecific sulfuration of H-phosphonate diesters. Journal of Organic Chemistry, 1992, 57, 6163-6169.	3.2	44
29	Nucleoside H-phosphonates. 14. Synthesis of nucleoside phosphoroselenoates and phosphorothioselenoates via stereospecific selenization of the corresponding H-phosphonate and H-phosphonothioate diesters with the aid of new selenium-transfer reagent, 3H-1.2-benzothiaselenol-3-one. Journal of Organic Chemistry, 1994, 59, 130-136.	3.2	42
30	Studies on aryl H-phosphonates. 3. Mechanistic investigations related to the disproportionation of diphenyl H-phosphonate under anhydrous basic conditions. Tetrahedron, 1996, 52, 9931-9944.	1.9	42
31	Nucleoside H-Phosphonates. XI. A Convenient Method for the Preparation of Nucleoside H-Phosphonates. Nucleosides & Nucleotides, 1990, 9, 129-135.	0.5	41
32	A new selenium-transferring reagent—triphenylphosphine selenide. Chemical Communications, 2001, , 771-772.	4.1	40
33	A facile access to nucleoside phosphorofluoridate, nucleoside phosphorofluoridothioate, and nucleoside phosphorofluoridodithioate monoesters. Tetrahedron Letters, 1996, 37, 5739-5742.	1.4	36
34	Synthesis of dinucleoside pyridylphosphonates involving palladium(0)-catalysed phosphorus–carbon bond formation as a key step. Chemical Communications, 2001, , 2564-2565.	4.1	36
35	Phosphoryl tris-triazole - a new phosphorylating reagent. Tetrahedron Letters, 1980, 21, 2935-2936.	1.4	35
36	Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron, 2009, 65, 10406-10412.	1.9	35

#	Article	IF	CITATIONS
37	Nucleoside 3'-H-phosphonates. 8. Activation of hydrogen phosphonate monoesters by chlorophosphates and arenesulfonyl derivatives. Journal of Organic Chemistry, 1987, 52, 284-287.	3.2	34
38	A new approach to the synthesis of the 5′-deoxy-5′-methylphosphonate linked thymidine oligonucleotide analogues. Nucleic Acids Research, 1995, 23, 893-900.	14.5	34
39	Benzoyltetrazole: a mild benzoylating reagent for nucleosides. Journal of the Chemical Society Chemical Communications, 1976, , 243.	2.0	32
40	Studies on Aryl H-Phosphonates; Part 2: A General Method for the Preparation of Alkyl H-Phosphonate Monoesters. Synthesis, 1995, 1995, 427-430.	2.3	32
41	Iodine-promoted silylation of alcohols with silyl chlorides. Synthetic and mechanistic studies. Tetrahedron, 2008, 64, 8843-8850.	1.9	32
42	Stereospecific oxidation and oxidative coupling of H-phosphonate and H-phosphonothioate diesters. Tetrahedron Letters, 1992, 33, 3185-3188.	1.4	31
43	Regioselective and stereospecific acylation across oxirane- and silyloxy systems as a novel strategy to the synthesis of enantiomerically pure mono-, di- and triglycerides. Organic and Biomolecular Chemistry, 2007, 5, 3787.	2.8	31
44	Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies. New Journal of Chemistry, 2010, 34, 967.	2.8	31
45	Nucleoside H-Phosphonates. 17. Synthetic and31P NMR Studies on the Preparation of Dinucleoside H-Phosphonothioates. Journal of Organic Chemistry, 1996, 61, 6617-6622.	3.2	30
46	A phosphorus nuclear magnetic resonance spectroscopic study of the conversion of hydroxy groups into iodo groups in carbohydrates using the iodine–triphenylphosphine–imidazole reagent. Journal of the Chemical Society Perkin Transactions II, 1987, , 271-274.	0.9	29
47	Nucleoside H-phosphonates. 13. Studies on 3H-1,2-benzodithiol-3-one derivatives as sulfurizing reagents for H-phosphonate and H-phosphonothioate diesters. Journal of Organic Chemistry, 1991, 56, 5169-5175.	3.2	29
48	Solid support synthesis of all-Rp-oligo(ribonucleoside phosphorothioate)s. Nucleic Acids Research, 1996, 24, 3811-3820.	14.5	29
49	NucleosideH-Phosphonates. 18. Synthesis of Unprotected Nucleoside 5â€~-H-Phosphonates and Nucleoside 5â€~-H-Phosphonothioates and Their Conversion into the 5â€~-Phosphorothioate and 5â€~-Phosphorodithioate Monoesters. Journal of Organic Chemistry, 1998, 63, 8150-8156.	3.2	29
50	2-Pyridylphosphonates: a new type of modification for nucleotide analogues. Tetrahedron Letters, 2001, 42, 2217-2220.	1.4	29
51	Novel DNA analogues with 2-, 3- and 4-pyridylphosphonate internucleotide bonds: synthesis and hybridization properties. New Journal of Chemistry, 2003, 27, 1698.	2.8	29
52	Photochemistry of Di(deoxyribonucleoside) Methylphosphonates Containing N3-Methyl-4-thiothymine. Journal of Organic Chemistry, 1994, 59, 7273-7283.	3.2	28
53	Reinvestigation of the 31P NMR evidence for the formation of diorganyl phosphoropyridinium intermediates. Perkin Transactions II RSC, 2001, , 2263-2266.	1.1	28
54	Regioselective opening of an oxirane system with trifluoroacetic anhydride. A general method for the synthesis of 2-monoacyl- and 1,3-symmetrical triacylglycerols. Tetrahedron, 2005, 61, 3659-3669.	1.9	28

#	Article	IF	CITATIONS
55	Nucleoside H-Phosphonates. IX. Possible Side-Reactions During Hydrogen Phosphonate Diester Formation. Nucleosides & Nucleotides, 1988, 7, 23-35.	O.5	27
56	5′-Hydrogenphosphonates of anti-HIV nucleoside analogues revisited: controversial mode of action. Antiviral Research, 1993, 22, 143-153.	4.1	27
57	Aryl H-phosphonates. 7. Studies on the formation of phosphorus-carbon bond in the reaction of trityl and benzyl halides with dialkyl and diphenyl H-phosphonates. Tetrahedron, 1997, 53, 12691-12698.	1.9	27
58	Aryl H-Phosphonates. 6. Synthetic Studies on the Preparation of Nucleoside N-Alkyl-H-phosphonamidates. Journal of Organic Chemistry, 1997, 62, 4791-4794.	3.2	26
59	ArylH-Phosphonates 17: (N-Aryl)phosphoramidates of Pyrimidine Nucleoside Analogues and Their Synthesis, Selected Properties, and Anti-HIV Activity. Journal of Medicinal Chemistry, 2011, 54, 6482-6491.	6.4	26
60	3H-1,2-benzothiaselenol-3-one. A new selenizing reagent for nucleoside H-phosphonate and H-phosphonothioate diesters. Tetrahedron Letters, 1992, 33, 7255-7258.	1.4	25
61	A new synthetic method for the preparation of nucleoside phosphoramidate analogues with the nitrogen atom in bridging positions of the phosphoramidate linkage. Tetrahedron Letters, 1998, 39, 1219-1222.	1.4	23
62	Nucleoside Phosphonates. Development of Synthetic Methods and Reagents. Nucleosides & Nucleotides, 1996, 15, 361-378.	0.5	22
63	Synthesis and DFT studies of an antitumor active spiro-oxindole. New Journal of Chemistry, 2015, 39, 8017-8027.	2.8	22
64	The case of sulfonation in the chemical synthesis of oligonucleotides. Nucleic Acids Research, 1980, 8, 2301-2306.	14.5	21
65	A new type of nucleotide analogue with 4-pyridylphosphonate internucleotide linkage. Tetrahedron Letters, 1999, 40, 4263-4266.	1.4	21
66	ArylH-Phosphonates. 12. Synthetic and31P NMR Studies on the Preparation of NucleosideH-Phosphonothioate and NucleosideH-Phosphonodithioate Monoesters. Journal of Organic Chemistry, 2000, 65, 7049-7054.	3.2	21
67	Aryl H-phosphonates. 10. Synthesis of nucleoside phosphoramidate and nucleoside phosphoramidothioate analogues via H-phosphonamidate intermediates. Tetrahedron, 1999, 55, 11579-11588.	1.9	20
68	Studies Towards Synthesis of Dinucleoside Arylphosphonates with Metal Complexing Properties. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1459-1461.	1.1	20
69	Aryl nucleoside H-phosphonates. Part 16: Synthesis and anti-HIV-1 activity of di-aryl nucleoside phosphotriesters. Bioorganic and Medicinal Chemistry, 2009, 17, 3489-3498.	3.0	20
70	Some Chemical and Stereochemical Aspects of Ribonucleoside H-Phosphonate and H-Phosphonothioate Diester Synthesis. Nucleosides & Nucleotides, 1991, 10, 511-514.	0.5	18
71	Nucleoside H-Phosphonates. 15. Preparation of Nucleoside H-Phosphonothioate Monoesters from the Corresponding Nucleoside H-Phosphonates. Journal of Organic Chemistry, 1995, 60, 8241-8244.	3.2	18
72	Novel, regioselective transformation of an oxirane system. An efficient approach to the synthesis of endocannabinoid 2-arachidonoylglycerol. Tetrahedron Letters, 2002, 43, 1759-1761.	1.4	18

#	Article	IF	CITATIONS
73	3-H-2,1-benzoxathiol-3-one 1-oxide - a new reagent for stereospecific oxidation of nucleoside H-phosphonothioate diesters. Tetrahedron Letters, 1992, 33, 3189-3192.	1.4	17
74	Synthesis of stereochemically homogeneous oligoribonucleoside all-RP-phosphorothioates by combining H-phosphonate chemistry and enzymatic digestion. Journal of the Chemical Society Chemical Communications, 1994, , 1459-1460.	2.0	17
75	A new, efficient entry to nucleoside 2′,3′-O,O-cyclophosphorothioates. Tetrahedron Letters, 2000, 41, 2227-2229.	1.4	17
76	A new approach to stereospecific synthesis of P-chiral phosphorothioates. Preparation of diastereomeric dithymidyl-(3′-5′) phosphorothioates. Chemical Communications, 2004, , 290-291.	4.1	17
77	Studies on reactions of nucleoside H-phosphonates with bifunctional reagents. Part 2. Stability of nucleoside H-phosphonate diesters in the presence of amino alcohols. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1803-1808.	0.9	16
78	Nucleotide Analogues Containing the P-F Bond. An Overview of the Synthetic Methods. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 663-680.	1.1	16
79	Controlling stereochemistry during oxidative coupling. Preparation of Rp or Sp phosphoramidates from one P-chiral precursor. Chemical Communications, 2004, , 2566.	4.1	16
80	Studies on the activation pathway of phosphonic acid using acyl chlorides as activators. Journal of the Chemical Society Perkin Transactions II, 1990, , 849.	0.9	15
81	9-Fluorenemethyl H-phosphonothioate, a versatile reagent for the preparation of H-phosphonothioate, phosphorothioate, and phosphorodithioate monoesters. Tetrahedron Letters, 1997, 38, 2007-2010.	1.4	15
82	The reaction of diphenyl and dialkyl phosphorochloridates with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Formation of phosphonate diesters via N→C phosphorus migration. Journal of the Chemical Society Perkin Transactions II, 1999, , 2071-2075.	0.9	15
83	Stereospecific and regioselective opening of an oxirane system. A new efficient entry to 1- or 3-monoacyl- and 1- or 3-monoalkyl-sn-glycerols. Tetrahedron Letters, 2005, 46, 1601-1605.	1.4	15
84	The role of nucleophilic catalysis in chemistry and stereochemistry of ribonucleosideH-phosphonate condensation. New Journal of Chemistry, 2009, 33, 164-170.	2.8	15
85	Recent Advances in H-Phosphonate Chemistry. Part 1. H-Phosphonate Esters: Synthesis and Basic Reactions. Topics in Current Chemistry, 2014, 361, 137-177.	4.0	15
86	Aryl H-phosphonates. Part IV. A new method for internucleotide bond formation based on transesterification of aryl nucleoside H-phosphonate diesters. Tetrahedron Letters, 1996, 37, 4561-4564.	1.4	14
87	A new method for the formation of the P–F bond. Chemical Communications, 1997, , 991-992.	4.1	14
88	The case for configurational stability of H-phosphonate diesters in the presence of diazabicyclo[5.4.0]undec-7-ene (DBU). Bioorganic and Medicinal Chemistry, 2001, 9, 2315-2322.	3.0	14
89	Studies on Ribonucleoside Hydrogenphosphonates. Effect of a Vicinal Hydroxyl Function on the Stability of H-Phosphonate Diester Bond. Nucleosides & Nucleotides, 1988, 7, 321-337.	0.5	13
90	A new method for the synthesis of nucleoside 2′,3′-O,O-cyclic phosphorodithioates via aryl cyclic phosphites as intermediates. Tetrahedron Letters, 2001, 42, 8055-8058.	1.4	13

#	Article	IF	CITATIONS
91	Nucleoside H-phosphonates. Part 19: Novel nucleotide analogues—H-phosphonoselenoate mono- and diesters. Tetrahedron Letters, 2002, 43, 515-518.	1.4	13
92	Regioselective and Stereospecific Halosilylating Cleavage of the Oxirane System of Glycidol Derivatives as an Efficient Strategy to C2â€ <i>O</i> â€Functionalized C3â€Vicinal Halohydrins. European Journal of Organic Chemistry, 2008, 2008, 2635-2643.	2.4	13
93	The Case for the Intermediacy of Monomeric Metaphosphate Analogues during Oxidation of H-Phosphonothioate, H-Phosphonodithioate, and H-Phosphonoselenoate Monoesters: Mechanistic and Synthetic Studies. Journal of Organic Chemistry, 2008, 73, 5029-5038.	3.2	13
94	A new entry to nucleoside phosphorofluoridate and nucleoside phosphorofluoridothioate diesters. Tetrahedron Letters, 1996, 37, 3537-3540.	1.4	12
95	The Reactions of H-Phosphonates with Bifunctional Reagents. V. Functionalization of Support-Bound Oligonucleotides and Synthesis of Nonradioactive Hybridization Probes. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 253-267.	1.1	12
96	Studies on the reaction of trityl derivatives withH-phosphonate diesters: Their relevance to the synthesis of 4-pyridylphosphonates. Heteroatom Chemistry, 1999, 10, 492-499.	0.7	12
97	Theoretical investigations on the mechanism of chalcogens exchange reaction between P(V) and P(III) compounds. Journal of Organometallic Chemistry, 2005, 690, 2571-2576.	1.8	12
98	A New, Efficient Entry to Non-Lipophilic H-Phosphonate Monoesters – Preparation of Anti-HIV Nucleotide Analogues. Letters in Organic Chemistry, 2009, 6, 496-499.	0.5	12
99	New 3′-O-aromatic acyl-5-fluoro-2′-deoxyuridine derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2016, 115, 41-52.	5.5	12
	Synthesis and some conformational features of the 5′-deoxy-5′-methylphosphonate linked dimer,		

#	Article	IF	CITATIONS
109	Studies on reactions of nucleoside H-phosphonates with bifunctional reagents. Part 1. Reaction with amino alcohols. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1699-1704.	0.9	10
110	Aryl Hî—,phosphonates. 8. Simple and efficient method forv the preparation of nucleoside Hî—,phosphonothioate monoesters. Tetrahedron Letters, 1999, 40, 3945-3948.	1.4	10
111	Aryl H-phosphonates. Part 11. Synthetic and 31P NMR studies on the formation of aryl nucleoside H-phosphonates â€. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3327-3331.	0.9	10
112	Nucleoside H-phosphonates. Part 19: Efficient entry to novel nucleotide analogues with 2-pyridyl- and 4-pyridylphosphonothioate internucleotide linkages. Tetrahedron, 2004, 60, 389-395.	1.9	10
113	A proposal for a convenient notation forP-chiral nucleotide analogues. Part 2. Dinucleoside monophosphate analogues. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 1363-1375.	1.1	10
114	Stereochemistry of Internucleotide Bond Formation by the <i>H-</i> Phosphonate Method. 5. The Role of BrĄ̃nsted and H-Bonding Base Catalysis in Ribonucleoside <i>H-</i> Phosphonate Condensation—Chemical and Stereochemical Consequences. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 628-645.	1.1	10
115	Computational Study of the Mechanism and Selectivity of Palladium-Catalyzed Propargylic Substitution with Phosphorus Nucleophiles. Chemistry - A European Journal, 2012, 18, 12424-12436.	3.3	10
116	Reaction of Boranephosphonate Diesters with Amines in the Presence of Iodine: The Case for the Intermediacy of H-Phosphonate Derivatives. Journal of Organic Chemistry, 2018, 83, 5496-5505.	3.2	10
117	H-Phosphonate Chemistry in the Synthesis of Electrically Neutral and Charged Antiviral and Anticancer Pronucleotides. Frontiers in Chemistry, 2020, 8, 595738.	3.6	10
118	Studies on the reaction of nucleoside phosphorodiesters with aryl sulfonyl chlorides. Tetrahedron Letters, 1986, 27, 2665-2666.	1.4	9
119	Studies on the Oxidation of Nucleoside Hydrogenphosphonates. Nucleosides & Nucleotides, 1987, 6, 429-432.	0.5	9
120	Studies on reactions of nucleoside H-phosphonate diesters with bifunctional reagents. Part 4. Chemoselectivity during oxidative coupling of nucleoside H-phosphonate diesters with amino alcohols controlled by protonation of the amino function. Tetrahedron Letters, 1995, 36, 2295-2298.	1.4	9
121	A Proposal for a New Stereochemical Notation forP-Chiral Nucleotide Analogues and Related Compounds. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1301-1307.	1.1	9
122	Molecular and crystal structure of Sp-thymidin-3'-yl 4-thiothymidin-5'-yl methylphosphonate. Nucleic Acids Research, 1993, 21, 3921-3926.	14.5	8
123	Synthesis and Anti-Retroviral Activity ofO,O′-BIS(3′-Azido-2′,3′-Dideoxythymidin-5′-yl) Phosphorami Derivatives. Nucleosides & Nucleotides, 1999, 18, 2317-2325.	date 0.5	8
124	Studies on Reactions of Nucleoside H-Phosphonates with Bifunctional Reagents. Part VI. Reaction with Diols. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1487-1503.	1.1	8
125	Nucleoside 3′,5′-Cyclic H-Phosphonates, New Useful Precursors for the Synthesis of Nucleoside 3′,5′-Cyclic Phosphates and Their Analogues. Organic Letters, 2013, 15, 4082-4085.	4.6	8
126	Studies on the preparation of nucleoside H-phosphonothioates. Collection of Czechoslovak Chemical Communications, 1990, 55, 141-144.	1.0	8

#	Article	IF	CITATIONS
127	Iodine and Iodine Catalysed Phosphorylation of Nucleosides by Phosphorodiester Derivatives. Nucleosides & Nucleotides, 1987, 6, 815-820.	0.5	7
128	Nucleoside H-phosphonates. Part 16.31P NMR studies on the transformation of nucleoside H-phosphonate monoesters into a monofunctional tervalent intermediate, nucleoside acyl silyl phosphite. Journal of the Chemical Society Perkin Transactions II, 1996, , 795-799.	0.9	7
129	A direct transformation of O-silyl groups into O-trichloroacetates. A novel synthetic approach to protein kinase C ligands: 1-oleoyl-2-acetyl- and 1-hexadecyl-2-acetyl-sn-glycerols. Tetrahedron Letters, 2005, 46, 6855-6859.	1.4	7
130	Regioselective and stereospecific cleavage of a terminal oxirane system: A novel synthetic approach to lipid mediator congeners—1,2(2,3)-diacyl-3(1)-halo-sn-glycerols. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3388-3391.	2.2	7
131	On the Sulfurization of <i>H</i> -Phosphonate Diesters and Phosphite Triesters Using Elemental Sulfur. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 908-916.	1.6	7
132	Aryl H-phosphonates. 19. New anti-HIV pronucleotide phosphoramidate diesters containing amino- and hydroxypyridine auxiliaries. European Journal of Medicinal Chemistry, 2019, 164, 47-58.	5.5	7
133	Synthetic studies on the preparation of dinucleoside phenylphosphonates and phenylphosphonothioates via palladium(0) catalysed cross-coupling. , 2005, , .		7
134	FTIR Study on Nucleotide Analogues. 1. Spectral Characterization of Dinucleoside Methylphosphonates and Dinucleoside 5′- Methylenephosphonates in Solution and in Solid Phase. Journal of Biomolecular Structure and Dynamics, 1997, 15, 119-128.	3.5	6
135	Studies on enzymatic hydrolysis of thymidin-3′-yl thymidin-5′-yl phosphorofluoridates and the corresponding phosphorothiofluoridates. Chemical Communications, 1999, , 2115-2116.	4.1	6
136	Di- and Oligonucleotide Synthesis Using <i>H</i> -Phosphonate Chemistry. , 2005, , 081-100.		6
137	Direct Acylation across a Silyloxy System of Glycerol with Carboxylic Acid Anhydrides: A Novel Strategy to the Prodrug Carrier Modules - 1,3-Diacyl-sn-glycerols. Synlett, 2005, 2005, 2587-2590.	1.8	6
138	Stereochemistry of Internucleotide Bond Formation by the H-Phosphonate Method. 1. Synthesis and 31P Nmr Analysis of 16 Diribonulceoside (3′-5′)-H-Phosphonates and the Corresponding Phosphorothioates. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1469-1484.	1.1	6
139	A CAUTIONARY NOTE ON THE USE OF THE 31P NMR SPECTROSCOPY IN STEREOCHEMICAL CORRELATION ANALYSIS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1033-1036.	1.1	6
140	Efficient, highly regioselective, and stereospecific conversion of glycidol systems into C2-O-acylated vicinal halohydrins. Tetrahedron Letters, 2006, 47, 2543-2547.	1.4	6
141	New antiglioma zwitterionic pronucleotides with an FdUMP framework. European Journal of Medicinal Chemistry, 2018, 144, 682-691.	5.5	6
142	Chemical and Stereochemical Aspects of Oxidative Coupling of HPhosphonate and H-Phosphonothioate Diesters. Reactions with N,N-, N,Oand O,O-Binucleophiles. Letters in Organic Chemistry, 2005, 2, 188-197.	0.5	6
143	Evaluation of the Use of the t-Butyldimethylsilyl Group for 2′-Protection in RNA-Synthesis Via the H-Phosphonate Approach. Nucleosides & Nucleotides, 1988, 7, 779-782.	0.5	5
144	Studies on Sulfurization of Nucleoside H-Phosphonate and H-Phosphonothioate Esters Using 3H-1,2-Benzodithiol.3-one 1,1-dioxide. Nucleosides & Nucleotides, 1991, 10, 517-518.	0.5	5

#	Article	IF	CITATIONS
145	2-Cyanoethyl H-Phosphonate. A Reagent for the Mild Preparation of Nucleoside H-Phosphonate Monoesters. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 715-716.	1.1	5
146	Preparation of nucleoside 5â€2-deoxy-5â€2-methylenephosphonates as building blocks for the synthesis of methylenephosphonate analogues. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2585-2590.	0.9	5
147	A Simple and Efficient Method for Direct Acylation of Acetals with Long Alkyl-Chain Carboxylic Acid Anhydrides. Tetrahedron, 2000, 56, 9697-9703.	1.9	5
148	Regioselective and stereospecific opening of an oxirane system mediated by trifluoroacetic acid and halide anions. A new direct approach to C3-vicinal halohydrins. Tetrahedron Letters, 2007, 48, 1887-1889.	1.4	5
149	Stereochemistry of internucleotide bond formation by the H-phosphonate method. Part 6: Optimization of the reaction conditions towards highest stereoselectivity. Tetrahedron: Asymmetry, 2008, 19, 2508-2518.	1.8	5
150	Palladium(0)-Catalyzed Benzylation of H-Phosphonate Diesters: An Efficient Entry to Benzylphosphonates. Synlett, 2009, 2009, 225-228.	1.8	5
151	Recent Advances in H-Phosphonate Chemistry. Part 2. Synthesis of C-Phosphonate Derivatives. Topics in Current Chemistry, 2014, 361, 179-216.	4.0	5
152	Conversion of Nucleoside H-Phosphonate Monoesters to the Corresponding H-Phosphonothioates. 31P NMR Studies. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 711-714.	1.1	4
153	New Methods for Multiple Modifications of a Phosphorus Centre. Their Relevance to Nucleotide and Oligonucleotide Analogues Synthesis. Nucleosides & Nucleotides, 1999, 18, 1245-1246.	0.5	4
154	9-Fluorenemethyl H-Phosphonoselenoate—A Versatile Reagent for Transferring an H-Phosphonoselenoate Group. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1463-1465.	1.1	4
155	Nucleoside H-Phosphonates. XXI. Synthetic and 31P NMR Studies on the Preparation of Dinucleoside H-Phosphonoselenoates. Collection of Czechoslovak Chemical Communications, 2006, 71, 820-831.	1.0	4
156	A Proposal for a Convenient Notation for P-Chiral Nucleotide Analogues. Part 4. A Relationship Between theDP/LPNotation and Stereochemistry of Reactions. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 29-42.	1.1	4
157	Studies on the decomposition pathways of diastereoisomeric mixtures of aryl nucleoside α-hydroxyphosphonates under hydrolytic conditions. Synthesis of α-hydroxyphosphonate monoesters. New Journal of Chemistry, 2010, 34, 976.	2.8	4
158	Reaction of Boranephosphonate Diesters with Pyridines or Tertiary Amines in the Presence of Iodine: Synthetic and Mechanistic Studies. Journal of Organic Chemistry, 2020, 85, 4312-4323.	3.2	4
159	Oxidative coupling of H-phosphonate and H-phosphonothioate diesters. Iodine as a reagent and a catalyst. , 2002, , .		4
160	Synthetic studies on the P–C bond formation via a palladium-catalyzed cross-coupling reaction. Application to the synthesis of P-arylated nucleic acids. , 2008, , .		4
161	Searching for anti-glioma activity. Ribonucleoside analogues with modifications in nucleobase and sugar moieties Acta Biochimica Polonica, 2017, 63, 765-771.	0.5	4
162	Chemical Synthesis of RNA-Fragment Analogues That Have Phosphorothioate Linkages of Identical Configuration. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 879-881.	1.1	3

#	Article	IF	CITATIONS
163	A Molecular Dynamics Computer Simulation Study of Nucleotide Analogues. Comparison of the Hydration Pattern of Dithymidine Phosphate with those of the Dithymidine Methylphosphonate Diastereomers. Journal of Biomolecular Structure and Dynamics, 1998, 15, 987-998.	3.5	3
164	Developing Synthetic Methods for Bioactive Phosphorus Compounds Using H-Phosphonate Chemistry: A Progress Report. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 617-621.	1.1	3
165	Synthesis of Oligodeoxyribo―and Oligoribonucleotides According to the H â€Phosphonate Method. Current Protocols in Nucleic Acid Chemistry, 2004, 19, Unit 3.4.	0.5	3
166	ARYL NUCLEOSIDE H-PHOSPHONATES AS A TOOL FOR INVESTIGATION OF STEREOSPECIFICITY DURING COUPLING. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 887-890.	1.1	3
167	OXIDATIVE TRANSFORMATIONS OF NUCLEOSIDE FLUORENEMETHYL H-PHOSPHONOSELENOATE DIESTERS. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 659-661.	1.1	3
168	Preparation of Nucleoside H-Phosphonoselenoate Monoesters Via the Phosphinate Approach. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1627-1633.	1.1	3
169	Direct Trifluoroacetylation Across a Trimethylsilyloxy System as a StereoÂspecific, Chemo- and Regioselective Approach to C3-Vicinal Halohydrins. Synlett, 2007, 2007, 0439-0442.	1.8	3
170	Stereochemistry of internucleotide bond formation by the H-phosphonate method. 7. Stereoselective formation of ribonucleoside (RP)- and (SP)-3′-H-phosphonothioate monoesters. Tetrahedron: Asymmetry, 2010, 21, 410-419.	1.8	3
171	The case of triethylammonium cation loss during purification of certain nucleotide analogues: a cautionary note. Analytical and Bioanalytical Chemistry, 2015, 407, 1775-1780.	3.7	3
172	Synthesis of Pyridiniumboranephosphonate Diesters and Related Compounds using Trityl Cation as a Borane Hydride Acceptor. Synthesis, 2021, 53, 509-517.	2.3	3
173	The reactions of aryl nucleoside H-phosphonates with O-, N-, and S-nucleophiles. , 1999, , .		3
174	Triphenyl phosphoroselenoate â \in " a new selenizing agent for P(III) compounds. , 2002, , .		3
175	A Cautionary Note on the Use of 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) in Conjunction with Chlorophosphates Acta Chemica Scandinavica, 1998, 52, 1405-1406.	0.7	3
176	Activation of Nucleoside Hydrogenphosphonates by Use of Aryl Sulfonyl Chlorides. Nucleosides & Nucleotides, 1987, 6, 425-427.	0.5	2
177	The H-Phosphonate Method for Constructing Phosphodiester Linkages. A Progress Report. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 799-803.	1.1	2
178	Recent Studies in Nucleoside Phosphonate Chemistry. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1029-1032.	1.1	2
179	Studies on the Conversion of Nucleoside H-Phosphonate Monoesters into the Corresponding H-Phosphonothioates. Nucleosides & Nucleotides, 1991, 10, 515-516.	0.5	2
180	RNA-Synthesis Using the H-Phosphonate Approach and an Improved Protecting Group Strategy. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 883-887.	1.1	2

#	Article	IF	CITATIONS
181	Solid Phase Synthesis of 5'-Methylenephosphonate DNA. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 871-874.	1.1	2
182	Studies on Nucleoside H-Phosphonothioates as Synthons in the Synthesis of Oligonucleotide Analogues. Nucleosides & Nucleotides, 1997, 16, 1661-1662.	0.5	2
183	New Methods for the Formation of the P-N and P-F Bonds, their Relevance to Nucleotide and Oligonucleotide Analogues Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 637-640.	1.6	2
184	A Mild Method for the Preparation of Nucleoside Phosphorofluoridate and Phosphorofluoridothioate Diesters. Nucleosides & Nucleotides, 1999, 18, 1243-1244.	0.5	2
185	Deoxyribo―and Ribonucleoside H â€Phosphonates. Current Protocols in Nucleic Acid Chemistry, 2001, 4, Unit 2.6.	0.5	2
186	New Synthetic Methods for Nucleotide Analogues Based on H-Phosphonate Chemistry: A Progress Report. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1513-1516.	1.6	2
187	Synthesis of Nucleotide Analogues with Pyridylphosphonate and Pyridylphosphono thio ate Internucleotide Linkages. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1779-1782.	1.6	2
188	DEVELOPING SYNTHETIC METHODS FOR BIOACTIVE PHOSPHORUS COMPOUNDS USING H-PHOSPHONATE CHEMISTRY: A PROGRESS REPORT. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 353-357.	1.1	2
189	Studies on Oxidative Transformations of Dinucleoside H-Phosphonoselenoates. Collection of Czechoslovak Chemical Communications, 2006, 71, 832-841.	1.0	2
190	Regioselective, Haloacylating Cleavage of an Oxirane System Mediated by Trifluoroacetic Anhydride/Trimethylsilyl Halides: An Efficient Entry to 2-Acyl-3-haloglycerols. Synlett, 2006, 2006, 2251-2255.	1.8	2
191	Synthesis of nucleoside phosphorothio-, phosphorodithio- and phosphoroselenoate diesters via oxidative esterification of the corresponding H-phosphonate analogues. Nucleic Acids Symposium Series, 2008, 52, 285-286.	0.3	2
192	Novel reactivity of Fhit proteins: catalysts for fluorolysis of nucleoside 5â€2-phosphoramidates and nucleoside 5â€2-phosphosulfates to generate nucleoside 5â€2-phosphorofluoridates. Biochemical Journal, 2015, 468, 337-344.	3.7	2
193	Aryl H-phosphonates. Part 5. A simple method for the synthesis of aminoalkyl H-phosphonate monoesters via transesterification of diphenyl H-phosphonate with amino alcohols. Collection of Czechoslovak Chemical Communications, 1996, 61, 238-241.	1.0	2
194	31P NMR studies on the activation pathways of aryl H-phosphonate esters with condensing agents. Collection of Czechoslovak Chemical Communications, 1996, 61, 246-249.	1.0	2
195	Dinucleoside aryl phosphorothioates as building blocks for large scale synthesis of chimeric oligonucleotide analogues. , 2002, , .		2
196	Determination of absolute configuration of nucleoside 3'-H-phosphonothioate monoesters via stereochemical correlation analysis. , 2005, , .		2
197	DNA oligonucleotides with stereodefined phenylphosphonate and phosphonothioate internucleotide bonds: synthesis and physico-chemical properties. Arkivoc, 2012, 2012, 63-79.	0.5	2
198	Studies on Nucleoside Phosphonates and Their Derivatives. a Progress Report. Nucleosides & Nucleotides, 1997, 16, 679-684.	0.5	1

Jacek Stawinski

#	Article	IF	CITATIONS
199	Aryl H-phosphonates. Part 13.1 A new, general entry to aryl nucleoside phosphate and aryl nucleoside phosphorothioate diesters. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 31-37.	1.3	1
200	How to Get the Most Out of Two Phosphorus Chemistries. Studies on H-Phosphonates ChemInform, 2003, 34, no.	0.0	1
201	Chemoselectivity in Oxidative Coupling of Bifunctional Nucleophiles with Dinucleoside H-Phosphonate and Dinucleoside H-Phosphonothioate Diesters. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1467-1469.	1.1	1
202	Silylation-Mediated Transesterification ofO-Phenyl H-Phosphonothioates â^ A New Entry to Nucleoside H-Phosphonothioate Monoesters. European Journal of Organic Chemistry, 2004, 2004, 5111-5224.	2.4	1
203	Nucleoside H-Phosphonates XX. Efficient Method for the Preparation of Nucleoside H-Phosphonoselenoate Monoesters. Synthesis, 2005, 2005, 1668-1674.	2.3	1
204	The Influences of A Nitrogen Atom Position in Dinucleoside 2-,3-,4-Pyridylphosphonates on Fragmentation Patterns in Electrospray Ionization Multistage Tandem Mass Spectra. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 771-784.	1.1	1
205	A Convenient Stereochemical Notation for P â€Chiral Nucleotide Analogs. Current Protocols in Nucleic Acid Chemistry, 2007, 28, Appendix 1E.	0.5	1
206	31P NMR and Computational Studies on Stereochemistry of Conversion of Phosphoramidate Diesters into the Corresponding Phosphotriesters. Nucleosides, Nucleotides and Nucleic Acids, 2011, 30, 552-564.	1.1	1
207	Unusual Stereochemistry of Esterification of Uridine 3′-H-Phosphonothioate. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 952-955.	1.6	1
208	Nucleoside Di- and Triphosphates as a New Generation of Anti-HIV Pronucleotides. Chemical and Biological Aspects. Applied Sciences (Switzerland), 2021, 11, 2248.	2.5	1
209	Efficient method for the preparation of nucleoside phosphorofluoridates and nucleoside phosphorofluoridothioates. Collection of Czechoslovak Chemical Communications, 1996, 61, 68-71.	1.0	1
210	Studies on the synthesis of picolylphosphonate diesters. , 2002, , .		1
211	Developing synthetic methods for bioactive phosphorus compounds. A progress report. , 2005, , .		1
212	Synthetic studies on nucleoside 5'-H-phosphonate monoesters under Mitsunobu reaction conditions. Arkivoc, 2009, 2009, 20-27.	0.5	1
213	Reaction of H-Phosphonate Diesters with Trityl Halides. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 167-167.	1.6	Ο
214	31P NMR Studies on Oxidative Transformations of Aryl Nucleoside H-Phosphonate Diesters. Nucleosides & Nucleotides, 1999, 18, 991-992.	0.5	0
215	Nucleoside Phosphoramidate Analogues with Modification in the Bridging Positions of the Phosphodiester Linkage. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 169-169.	1.6	0
216	Nucleoside H-Phosphonates, XXII: Synthesis and Properties of New Nucleotide Analogues - H-Phosphonothiolate Diesters. Synlett, 2007, 2007, 2748-2752.	1.8	0

Jacek Stawinski

#	Article	IF	CITATIONS
217	Oxyonium phosphobetaines – unusually stable nucleophilic catalyst–phosphate complexes formed from H-phosphonates and N-oxides. RSC Advances, 2016, 6, 14448-14451.	3.6	0
218	Second generation of nucleotide analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-4.	1.6	0
219	Stereochemistry of internucleotide bond formation by the H-phosphonate method. 2. Transesterification of aryl ribonucleoside H-phosphonate diesters with alcohols. , 2005, , .		0
220	Synthesis of nucleoside phosphorothio-, phosphorodithio- and phosphoroselenoate diesters via oxidative esterification of the corresponding H-phosphonate analogues. , 2008, , .		0
221	STUDIES ON OLIGORIBONUCLEOTIDES SYNTHESIS. , 1980, , 9-12.		0
222	Studies on sulfurisation of H-phosphonate diesters in the presence of diazabicyclo[5.4.0]undec-7-ene (DBU). , 1999, , .		0
223	Developing synthetic methods for nucleotide analogues. A progress report. , 1999, , .		0
224	Boranephosphonates. Unraveling chemistry of the P-BH3 functional group. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-7.	1.6	0
225	Exploring Reactions of Nucleoside H-Phosphonates with Bifunctional Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 109, 261-264.	1.6	0